
CSE 413, Fall 2012, Lazy Evaluation Summary

Notes adapted from CSE 341 notes by Dan Grossman, Fall 2011.

The primary focus of this lecture is powerful programming idioms related to delaying evaluation (using
functions) and/or remembering previous results (using mutation). We will study lazy evaluation, streams,
and memoization.

But first we need to introduce how mutable bindings work in Racket, the truth about cons cells (they are
just pairs), and mutable cons cells (because the cons cells created by cons are not mutable).

Bindings are generally mutable: set! exists

While Racket encourages a functional-programming style with liberal use of closures and avoiding side effects,
the truth is it has assignment statements. If x is in your environment, then (set! x 13) will mutate the
binding so that x now maps to the value 13. Doing so affects all code that has this x in its environment.
Pronounced “set-bang,” the exclamation point is a convention to alert readers of your code that side effects
are occurring that may affect other code. Here is an example:

(define b 3)

(define f (lambda (x) (* 1 (+ x b))))

(define c (+ b 4))

(set! b 5)

(define z (f 4))

(define w c)

After evaluating this program, z is bound to 9 because the body of the function bound to f will, when
evaluated, look up b and find 5. However, w is bound to 7 because when we evaluated (define c (+ b 4)),
we found b was 3 and, as usual, the result is to bind c to 7 regardless of how we got the 7. So when we
evaluate (define w c), we get 7; it is irrelevant that b has changed.

You can also use set! for local variables and the same sort of reasoning applies: you have to think about
when you look up a variable to determine what value you get. But programmers used to languages with
assignment statements are all too used to that.

Mutating top-level bindings is particularly worrisome because we may not know all the code that is using
the definition. For example, our function f above uses b and could act strangely, even fail mysteriously, if
b is mutated to hold an unexpected value. If f needed to defend against this possibility it would need to
avoid using b after b might change. There is a general technique in software development you should know:
If something might get mutated and you need the old value, make a copy before the mutation can occur. In
Racket, we could code this up easily enough:

(define f

(let ([b b])

(lambda (x) (* 1 (+ x b)))))

This code makes the b in the function body refer to a local b that is initialized to the global b.

(Note: You might not have seen this before, but scheme allows pairs of brackets [and] to be used in
place of parentheses. The meaning is the same, but some people find this style more readable for things like
definition pairs in let expressions.)

But is this as defensive as we need to be? Since * and + are just variables bound to functions, we might
want to defend against them being mutated later as well:

1

(define f

(let ([b b]

[+ +]

[* *])

(lambda (x) (* 1 (+ x b)))))

Matters would get worse if f used other helper functions: Making local copies of variables bound to the
functions would not be enough unless those functions made copies of all their helper functions as well.

The previous discussion is not something that will affect most of your Racket programming (since you won’t
be doing things like that, right?), but it is useful to understand what set! means and how to defend against
mutation by making a copy. The point is that the possibility of mutation, which Racket often avoids, makes
it very difficult to write correct code.

The truth about cons cells

So far, we have used cons, null, car, cdr, and null? to create and access lists. For example,
(cons 14 (cons #t null)) makes the list ’(14 #t) where the quote-character shows this is printing a list
value, not indicating an (erroneous) function call to 14.

But the truth is cons cells are just pairs where you get the first part with car and the second part with cdr.
So we can write (cons (+ 7 7) #t) to produce the pair ’(14 . #t) where the period shows that this is
not a list. A list is, by convention and according to the list? predefined function, is either null or a pair
where the cdr (i.e., second component) is a list. A cons cell that is not a list is often called an improper
list, especially if it has nested cons cells in the second position, e.g., (cons 1 (cons 2 (cons 3 4))) where
the result prints as ’(1 2 3 . 4). Most list functions like length will give a run-time error if passed an
improper list.

What are improper lists good for? The real point is that pairs are a generally useful way to build data
with multiple pieces. And in a dynamically typed language, all you need for lists are pairs and some way to
recognize the end of the list, which in Racket is done with the null constant (which prints as ’()).

Mutable cons cells

We now revisit mutation. Consider this code:

(define x (cons 14 null))

(define y x)

(set! x (cons 42 null))

The set! changes x to refer to a new different cons cell. Since y refers to the old cons cell (we looked
up x prior to the mutation to initialize y), we still have y evaluating to ’(14 null). What if we want to
mutate the contents of a cons cell so that any variables or data structures referring to the cons cell see the
new value? This would be analogous to assigning to an object field in Java (x.cdr = 42), which is entirely
different from an assigning to a variable that refers to an object (x = new Cons(42,null)).

In Racket, cons cells are immutable, so this is not possible. (In Scheme, it is possible using primitives
set-car! and set-cdr!.) Hence we can continue to enjoy the benefits of knowing that cons cells cannot be
mutated by other code in our program. It has another somewhat subtle advantage: The Racket implemen-
tation can be clever enough to make list? a constant-time operation since it can store with every cons cell
whether or not it is a proper list when the cons cell is created. This cannot work if cons cells are mutable
because a mutation far down the list could turn it into an improper list.

If we want mutable pairs, though, Racket is happy to oblige with a different set of primitives:

• mcons makes a mutable pair

2

• mcar returns the first component of a mutable pair

• mcdr returns the second component of a mutable pair

• mpair? returns #t if given a mutable pair

• set-mcar! takes a mutable pair and an expression and changes the first component to be the result
of the expression

• set-mcdr! takes a mutable pair and an expression and changes the second component to be the result
of the expression

Since some of the powerful idioms in the rest of the lecture use mutation to store previously computed
results, we will find mutable pairs useful.

Delayed Evaluation

A key semantic issue for a language construct is when are its subexpressions evaluated. For example, in Racket
(and similarly in Java and most conventional languages), given (e1 e2 ... en) we evaluate the function
arguments e2, ..., en once before we execute the function body and given a function (lambda (...) ...)

we do not evaluate the body until it is called. We can contrast this rule (“evaluate arguments in advance”)
with how (if e1 e2 e3) works: we do not evaluate both e2 and e3. This is why:

(define (bad-if x y z) (if x y z))

is a function that cannot be used wherever you use an if-expression; the rules for evaluating subexpressions
are fundamentally different. For example, this function would never terminate since every call makes a
recursive call:

(define (factorial-wrong x)

(bad-if (= x 0)

1

(* x (factorial-wrong (- x 1)))))

However, we can use the fact that function bodies are not evaluated until the function gets called to make
a more useful version of an “if function”:

(define (good-if x y z) (if x (y) (z)))

Now wherever we would write (if e1 e2 e3) we could instead write (good-if e1 (lambda () e2) (lambda () e3)).
The body of good-if either calls the zero-argument function bound to y or the zero-argument function bound
to z. So this function is correct (for non-negative arguments):

(define (factorial x)

(good-if (= x 0)

(lambda () 1)

(lambda () (* x (factorial (- x 1))))))

Though there is certainly no reason to wrap Racket’s “if” in this way, the general idiom of using a zero-
argument function to delay evaluation (do not evaluate the expression now, do it later when/if the zero-
argument function is called) is very powerful. As convenient terminology/jargon, when we use a zero-
argument function to delay evaluation we call the function a thunk. You can even say, “thunk the argument”
to mean “use (lambda () e) instead of e”.

3

The rest of lecture considers three programming idioms; thunks are crucial in two of them and the third is
related.

Lazy Evaluation

Suppose we have a very large computation that we know how to perform but we do not know if we need
to perform it. The rest of the application knows where it needs this computation and there may be a few
different places. If we thunk, then we may repeat the large computation many times. But if we do not thunk,
then we will perform the large computation even if we do not need to. To get the “best of both worlds,” we
can use a programming idiom known by a few different (and perhaps technically slightly different) names:
lazy-evaluation, call-by-need, promises. The idea is to use mutation to remember the result from the first
time we use the thunk so that we do not need to use the thunk again.

One simple implementation in Racket would be:

(define (delay-eval f)

(mcons #f f))

(define (force-eval th)

(if (mcar th)

(mcdr th)

(begin (set-mcar! th #t)

(set-mcdr! th ((mcdr th)))

(mcdr th))))

We can create a thunk f and pass it to delay-eval. This returns a pair where the first field indicates we
have not used the thunk yet. Then force-eval, if it sees the thunk has not been used yet, uses it and
then uses mutation to change the pair to hold the result of using the thunk. That way, any future calls to
force-eval with the same pair will not repeat the computation. Ironically, while we are using mutation in
our implementation, this idiom is quite error-prone unless the thunk passed to delay-eval does not have
side effects, since those effects will occur at most once and it may be difficult to determine when the first
call to force-eval will occur.

Consider this silly example where we want to multiply the result of two expressions e1 and e2 using a
recursive algorithm (of course you would really just use * and this algorithm does not work if e1 produces
a negative number):

(define (mult x y)

(cond [(= x 0) 0]

[(= x 1) y]

[#t (+ y (mult (- x 1) y))]))

Now calling (mult e1 e2) evaluates e1 and e2 once each and then does 0 or more additions. But what if
e1 evaluates to 0 and e2 takes a long to compute? Then evaluating e2 was wasteful. So we could thunk it:

(define (mult x y-thunk)

(cond [(= x 0) 0]

[(= x 1) (y-thunk)]

[#t (+ y (mult (- x 1) (y-thunk)))]))

Now we would call (mult e1 (lambda () e2)). This works great if e1 evaluates 0, fine if e1 evaluates to
1, and terribly if e1 evaluates to a large number. After all, now we evaluate e2 on every recursive call. So
let’s use delay-eval and force-eval to get the best of both worlds:

4

(mult e1 (let ([x (delay-eval (lambda () e2))]) (lambda () (force-eval x))))

Notice we create the delayed computation once before calling mult, then the first time the thunk passed to
mult is called, force-eval will evaluate e2 and remember the result for future calls to force-eval x. An
alternate approach that might look simpler is to rewrite mult to expect a result from delay-eval rather
than an arbitrary thunk:

(define (mult x y-promise)

(cond [(= x 0) 0]

[(= x 1) (force-eval y-promise)]

[#t (+ (force-eval y-promise) (mult (- x 1) y-promise))]))

(mult e1 (delay-eval (lambda () e2)))

Some languages, most notably Haskell, use this approach for all function calls, i.e., the semantics for function
calls is different in these languages: If an argument is never used it is never evaluated, else it is evaluated
only once. This is called call-by-need whereas all the languages we will use are call-by-value (arguments are
fully evaluated before the call is made).

Streams

A stream is an infinite sequence of values. We obviously cannot create such a sequence explicitly (it would
literally take forever), but we can create code that knows how to produce the infinite sequence and other
code that knows how to ask for however much of the sequence it needs.

Streams are very common in computer science. You can view the sequence of bits produced by a synchronous
circuit as a stream, one value for each clock cycle. The circuit does not know how long it should run, but it
can produce new values forever. The UNIX pipe (cmd1 | cmd2) is a stream; it causes cmd1 to produce only
as much output as cmd2 needs for input. Web programs that react to things users click on web pages can
treat the user’s activities as a stream — not knowing when the next will arrive or how many there are, but
ready to respond appropriately. More generally, streams can be a convenient division of labor: one part of
the software knows how to produce successive values in the infinite sequence but does not know how many
will be needed and/or what to do with them. Another part can determine how many are needed but does
not know how to generate them.

There are many ways to code up streams; we will take the simple approach of representing a stream as a
thunk that when called produces a pair of (1) the first element in the sequence and (2) a thunk that represents
the stream for the second-through-infinity elements. Defining such thunks typically uses recursion. Here are
three examples:

(define ones (lambda () (cons 1 ones)))

(define nats

(letrec ([f (lambda (x) (cons x (lambda () (f (+ x 1)))))])

(lambda () (f 1))))

(define powers-of-two

(letrec ([f (lambda (x) (cons x (lambda () (f (* x 2)))))])

(lambda () (f 2))))

Given this encoding of streams and a stream s, we would get the first element via (car (s)), the sec-
ond element via (car ((cdr (s)))), the third element via (car ((cdr ((cdr (s)))))), etc. Remember
parentheses matter: (e) calls the thunk e.

We could write a higher-order function that takes a stream and a predicate-function and returns how many
stream elements are produced before the predicate-function returns true:

5

(define (number-until stream tester)

(letrec ([f (lambda (stream ans)

(let ([pr (stream)])

(if (tester (car pr))

ans

(f (cdr pr) (+ ans 1)))))])

(f stream 1)))

As an example, (number-until powers2 (lambda (x) (= x 16))) evaluates to 4.

As a side-note, all the streams above can produce their next element given at most their previous element.
So we could use a higher-order function to abstract out the common aspects of these functions, which lets
us put the stream-creation logic in one place and the details for the particular streams in another. This is
just another example of using higher-order functions to reuse common functionality:

(define (stream-maker fn arg)

(letrec ([f (lambda (x)

(cons x (lambda () (f (fn x arg)))))])

(lambda () (f arg))))

(define ones (stream-maker (lambda (x y) 1) 1))

(define nats (stream-maker + 1))

(define powers-of-two (stream-maker * 2))

Memoization

An idiom related to lazy evaluation that does not actually use thunks is memoization. If a function does not
have side-effects, then if we call it multiple times with the same argument(s), we do not actually have to do
the call more than once. Instead, we can look up what the answer was the first time we called the function
with the argument(s).

Whether this is a good idea or not depends on trade-offs. Keeping old answers in a table takes space and
table lookups do take some time, but compared to reperforming expensive computations, it can be a big win.
Again, for this technique to even be correct requires that given the same arguments a function will always
return the same result and have no side-effects. So being able to use this memo table (i.e., do memoization)
is yet another advantage of avoiding mutation.

To implement memoization we do use mutation: Whenever the function is called with an argument we have
not seen before, we compute the answer and then add the result to the table (via mutation).

As an example, let’s consider 3 versions of a function that takes an x and returns fibonacci(x). A fibonacci
number is a well-known definition that is useful in modeling populations and such.) A simple recursive
definition is:

(define (fibonacci x)

(if (or (= x 1) (= x 2))

1

(+ (fibonacci (- x 1))

(fibonacci (- x 2)))))

Unfortunately, this function takes exponential time to run. We might start noticing a pause for (fibonaccci 30),
and (fibonacci 40) takes a thousand times longer than that, and (fibonacci 10000) would take more
seconds than there are particles in the universe. Now, we could fix this by taking a “count up” approach
that remembers previous answers:

6

(define (fibonacci x)

(letrec ([f (lambda (acc1 acc2 y)

(if (= y x)

(+ acc1 acc2)

(f (+ acc1 acc2) acc1 (+ y 1))))])

(if (or (= x 1) (= x 2))

1

(f 1 1 3))))

This takes linear time, so (fibonacci 10000) returns almost immediately (and with a very large number),
but it required a quite different approach to the problem. With memoization we can turn fibonacci into
an efficient algorithm with a technique that works for lots of algorithms. It is closely related to “dynamic
programming,” which you often learn about in advanced algorithms courses. Here is the version that does
this memoization:

(define fibonacci

(letrec([memo null]

[f (lambda (x)

(let ([ans (assoc x memo)])

(if ans

(cdr ans)

(let ([new-ans (if (or (= x 1) (= x 2))

1

(+ (f (- x 1))

(f (- x 2))))])

(begin

(set! memo (cons (cons x new-ans) memo))

new-ans)))))])

f))

It is essential that different calls to f use the same mutable memo-table: if we create the table inside the call
to f, then each call will use a new empty table, which is pointless. But we do not put the table at top-level
just because that would be bad style since its existence should be known only to the implementation of
fibonacci.

For a large table, using a list and Racket’s assoc function may be a poor choice, but it is fine for demon-
strating the concept of memoization.

Why does this technique work to make (fibonacci 10000) complete quickly? Because when we evaluate
(f (- x 2)) on any recursive calls, the result is already in the table, so there is no longer an exponential
number of recursive calls. This is much more important than the fact that calling (fibonacci 10000) a
second time will complete even more quickly since the answer will be in the memo-table.

7

