
CSE 413
Languages & Implementation

Hal Perkins
Autumn 2012

Structs, Implementing Languages
(credits: Dan Grossman, CSE 341)

1

Outline

•  Representing programs
•  Racket structs
•  Implementing programming languages

–  Interpreters

2

Data structures in Racket

We’ve been using functions to abstract from lists
(make-expr left op right) =>
 (list left op right)
(operator expr) => (cadr expr)
etc.

We could also build weakly “typed” or self-describing
data by tagging each list:

(define (const i) (list ‘const i))
(define (add e1 e2) (list ‘add e1 e2))
(define (negate e) (list ‘negate e))

3

Racket structs

Racket provides structs with fields
Makes a new type (different from pair?, etc.)

(struct const (i) #:transparent)
(struct add (e1 e2) #:transparent)
(struct negate (e) #:transparent)

Provides constructor, predicate, accessors
(define exp (add 3 4))
(add? exp) => true
(pair? exp) => false
(add-e1 exp) => 3 (add-e2 exp) => 4

4

Representing program as trees

Can use either lists or structs (we’ll use structs) to build
trees to represent compound data & programs

(add (const 4)
 (negate (add (const 1)
 (negate (const 7)))))

There’s nothing that ties add, negate, const together
as the “expression type” other than the convention we
have in our heads and in program comments

5

Implementing programming
languages

Much of the course has been about fundamental
concepts for using PLs

Syntax, semantics, idioms
Important concepts like closures, delayed
evaluation, …

But we also want to learn basics of implementing PLs
Requires fully understanding semantics
Things like closures and objects are not “magic”
Many programming techniques are related/similar

Ex: rendering a document (“program” is the
structured document, “pixels” is the output)

6

Implementing languages

Two fundamental ways to implement a prog. lang. A
Write an interpreter in another language B

Read program in A as data, carry out its instructions,
and produce an answer (in A)
(Better names: evaluator, executor)

Write a compiler in another language B
Read program in A as data, produce an equivalent
program in another language C
Translation must preserve meaning
(Better name: translator)

7

It’s really more complicated

Evaluation (interpreter) and translation (compiler) are
the options, but many languages are implemented with
both and have multiple layers
Example: Java

Compiler to bytecode intermediate language (.class)
Can interpret the bytecode directly, but also
Compile frequently executed code to binary
The chip is an interpreter for binary

Except these days the chip translates x86 binary
to a more primitive code that it executes

Racket uses a similar mix

8

Sermon (er, rant)

Interpreter vs compiler vs combinations is about a
language implementation, not language definition
There is no such thing as a “compiled language” or
“interpreted language”

Program cannot see how the implementation works
Unfortunately you hear nonsense like this all the time:

“C is faster because it’s compiled and LISP is
interpreted”
Nonsense: You can write a C interpreter or a LISP
compiler
Please politely correct your managers, friends, and
other professors. J

9

OK, they do have a point

A traditional compiler does not need the language
implementation to run the program

Can “ship the binary” without the compiler
But Racket, Scheme, Javascript, Ruby, … have eval

At runtime can create data and treat it as a program
Then run that program
So we need an implementation (compiler,
interpreter, combination) at runtime

It is also true that some languages are designed with a
particular implementation strategy in mind, but it
doesn’t mean they couldn’t be implemented differently.

10

Embedding one language in another

How is (negate (add (const 2) (const 2)))
a “program” compared to “-(2+2)” ?
A traditional implementation includes a parser to read
the string “-(2+2)” and turn it into a tree-like data
structure called an abstract syntax tree (AST).

Ideal representation for either interpreting or as an
intermediate stage in compiling
For now we’ll create trees directly and interpret
them. Parsing later in the quarter.
We’ll also assume perfect programmers and not
worry about syntax or semantic errors.

11

The arith-exp example

This embedding approach is exactly what we did to
represent the language of arithmetic expressions using
Racket structs

(struct const (i) #:transparent)
(struct add (e1 e2) #:transparent)
(struct negate (e) #:transparent)
(add (const 4)
 (negate (add (const 1)
 (negate (const 7)))))

The missing piece is to define the interpreter
(define (eval-exp e) …)

12

The interpreter

An interpreter takes programs in the language and
produces values (answers) in the language

Typically via recursive helper functions with cases
This example is so simple we don’t need helpers
and can assume all recursive results are constants

(define (eval-exp e)
 (cond
 ((const? e) e)
 ((add? e)
 (const (+ (const-i (eval-exp (add-e1 e)))
 (const-i (eval-exp (add-e2 e))))))
 ((negate? e)
 (const (- (const-i (eval-exp (negate-e e))))))
 (#t (error “eval-exp expected an expression”))))

13

“Macros”

Another advantage of the embedding approach is we
can use the metalanguage to define helper functions
that create (new) programs in our language

They generate the (abstract) syntax
Result can then be put in a larger program or
evaluated

Example:
(define (triple x) (add x (add x x)))
(define p (add (const 1 (triple (const 2)))))

(all this does in create a program with 4 constant
expressions)

14

What’s missing

•  Two major things missing from this language
–  Local variables
–  Higher-order functions with lexical scope (closures)

•  To support local variables:
–  Interpreter helper function(s) need an environment as

an additional argument
•  Environment maps names to values
•  A Racket association list works fine for us

–  Evaluate a variable expression by looking up the name
–  A let-body is evaluated in an augmented environment

with the local bindings

15

Higher-order functions

The “magic”: How is the “right environment” round for
lexical scope when functions may return other functions,
store them in data structures, etc.?
Lack of magic: The interpreter uses a closure data
structure (with two parts) to keep the environment it will
need to use later
To evaluate a function expression:

A function is not a value, a closure is a value
Create a closure out of (i) the function and (ii) the
current environment

To evaluate a function call…

16

Function calls

To evaluate (exp1 exp2)
Evaluate exp1 in the current environment to get a closure
Evaluate exp2 in the current environment to get a value
Evaluate the closure’s function’s body in the closure’s
environment extended to map the function’s argument
name to the argument value

We only will implement single-argument functions
For recursion, a function name will evaluate to its
entire closure

This is the same semantics we’ve been learning
Given a closure, the code part is only ever evaluated using
the closure’s environment part (extended with the argument
binding), not the current environment at the call site.

17

Sounds expensive!

It isn’t!!
Time to build a closure is tiny: struct with two fields
Space to store closures might be large if the environment
is large

But environments are immutable, so lots of sharing is
natural and correct

Possible HW challenge problem (extra credit): when
creating a closure store a possibly smaller environment
holding only function free variables, i.e., “global” variables
used in a function but not bound in it

Function body would never need anything else from the
environment

18

Coming attractions

•  Specific details of MUPL (interpreter assignment)
•  Encoding MUPL programs as Racket structs and

encoding MUPL environments

•  Then mostly done with functional programming…

…but need to take out the garbage

•  After that: Ruby and object-oriented programming,

grammars, scanners, parsers, more implementation

19

