
CSE 413 Midterm, Nov. 5, 2012 Page 1 of 7

CSE 413 Midterm Exam

Nov. 5, 2012

Name ______________________________________

The exam is closed book, closed notes, no electronic devices, signal flags, tin-can telephones, or other
signaling or communications apparatus.

Please place your UW ID on the desk next to you where it can be checked without causing a disruption.

Style and indenting matter, within limits. We’re not overly picky about details like an extra or a missing
parenthesis, but we do need to be able to follow your code and understand it.

If you have questions during the exam, raise your hand and someone will come to you. Don’t leave your
seat.

Please wait to turn the page until everyone has their exam and you have been told to begin.

Advice: The solutions to several of the problems are quite short. Don’t be alarmed if there is a lot more
room on the page than you actually need for your answer.

More gratuitous advice: Be sure to get to all the questions. If you find you are spending a lot of time on
a question, move on and try other ones, then come back to the question that was taking the time.

1 / 20

2 / 20

3 / 20

4 / 20

5 / 20

Total / 100

CSE 413 Midterm, Nov. 5, 2012 Page 2 of 7

Question 1. (20 points) (programming warmup) Write a Racket function sumof that computes the

sum of the integers in its list argument. The elements of the list can be simple integers, or nested lists

that contain integers or other nested lists. Examples:

 (sumof ‘(1 2 3)) => 6

 (sumof ‘(1 (2 (3 4) 5))) => 15

 (sumof ‘((((42))))) => 42

Your solution does not need to be tail-recursive. You may define additional helper functions at top-level

if you really need them.

You should assume that the only elements of the lists are integers or nested lists. You do not need to

deal with other data types.

Hint: Racket has functions to test types of expressions including number? pair?

CSE 413 Midterm, Nov. 5, 2012 Page 3 of 7

Question 2. (20 points) Write a tail recursive function (minpower x target) that, given two

positive integers x and target, returns the smallest power of x that is at least as large as target.

i.e., the result is x or x2 or …, or xn such that xn >= target and no smaller power of x is at least that

large. Examples:

 (minpower 2 12) => 16 (since 23 = 8 and 24 = 16, which is the smallest power >= 12)

 (minpower 3 9) => 9 (since 32 = 9)

You may define any auxiliary functions you need at top level – they don’t need to be nested inside

minpower using letrec or anything similar (although you can do that if you want). For full credit

your function must be properly tail recursive.

CSE 413 Midterm, Nov. 5, 2012 Page 4 of 7

Question 3. (20 points) Pictures! Consider the following Racket definitions entered at the top-level of

the Racket interpreter.

 (define g (lambda (f) (lambda (x) (f (f x)))))

 (define p (lambda (x) (+ x x)))

 (define h (g p))

(a) Draw a diagram showing the environments, bindings, and closures created by the above definitions.

Then answer part (b) below.

(b) What is the value of (h 3) if we evaluate it after evaluating the above definitions?

CSE 413 Midterm, Nov. 5, 2012 Page 5 of 7

Question 4. (20 points) In homework 5 we implemented a memoized version of the (comb n k)

function, and we saw a memoized version of the Fibonacci function in lecture. For this problem,

implement a memoized version of factorial. (fact n) should return n! (= 1 * 2 * 3 * … * n), except

that it should retain previously computed values and reuse those values to avoid recomputing

previously calculated answers.

For this problem it’s fine to store the values in an association list. An association list is a list of pairs. The

function assoc can be used to retrieve values. For example, if lst is (cons (cons 1 2) (cons

(cons 3 4) null)), then (assoc 1 lst) is ‘(1 . 2) and (assoc 17 lst) is #f.

Complete the following code to implement the memoized factorial function. Your code may not define

any additional top-level functions.

(define fact

 (letrec((memo null)

 (f (lambda (x)

))

 f))

CSE 413 Midterm, Nov. 5, 2012 Page 6 of 7

Question 5. (20 points) We’d like to add a feature to MUPL to produce E-MUPL (enhanced MUPL). The

new feature is an operation to test whether a MUPL expression evaluates to a MUPL int.

(DON’T PANIC!!! The answer is considerably shorter than the question!)

Here is the specification for the new MUPL isint expression:

 If e is a MUPL expression, then (isint e) is a MUPL expression. The value of(isint e) is

either the MUPL value (int 1) if evaluating e produces a MUPL int, or is the MUPL value

(int 0) if e is some other kind of MUPL expression (apair, closure, etc.). In other words, it is

similar to the existing isaunit function that evaluates to 1 or 0 depending on whether its

operand is a MUPL aunit.

On the next page, write the code needed to add this new expression to the MUPL interpreter eval-

prog function.

You should assume that the following structure has been added to MUPL to represent this expression:

(struct isint (e)) ;; evaluate to 1 if e is an int else 0

(the #:transparent directives have been omitted from the struct declarations in this problem to

save space, but that does not change the meaning or use of the struct data types.)

For reference, here are the other structures defined in the original MUPL code (most of which you

probably won’t need):

(struct var (string)) ;; a variable, e.g., (var "foo")

(struct int (num)) ;; a constant number, e.g., (int 17)

(struct add (e1 e2)) ;; add two expressions

(struct ifgreater (e1 e2 e3 e4)) ;; if e1 > e2 then e3 else e4

(struct fun (nameopt formal body)) ;; a recursive(?) 1-argument function

(struct call (funexp actual)) ;; function call

(struct mlet (var e body)) ;; a local binding (let var = e in body)

(struct apair (e1 e2)) ;; make a new pair

(struct fst (e)) ;; get first part of a pair

(struct snd (e)) ;; get second part of a pair

(struct aunit ()) ;; unit value -- good for ending a list

(struct isaunit (e)) ;; evaluate to 1 if e is aunit else 0

;; a closure is not in "source" programs; it's what functions evaluate to

(struct closure (env fun))

Reminder: the Racket function (error "message") can be used to terminate evaluation with the

given message.

Write your code on the next page. (You can tear this page out of the exam for reference if that is

convenient.)

CSE 413 Midterm, Nov. 5, 2012 Page 7 of 7

Question 5. (cont.) Write your code to implement the new MUPL isint expression below.

(struct isint (e)) ;; evaluate to 1 if e is an int else 0

(define (eval-prog p)

 (letrec

 ((f (lambda (env p)

 (cond (...

 ((isint? p) ;; write your code for isint below

 (

)

)

 ...

 ;; remainder of eval-prog omitted

