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CSE413 Midterm 

05 November 2007 
 
Name _______  Sample solution   __________ Student ID __________ 
 
Answer all questions; show your work. You may use: 
 

1. The Scheme language definition. 
2. One 8.5 * 11” piece of paper with handwritten notes 

 
Other items, including laptop computers, calculators, cell phones, and other 
communications devices, are not allowed. 
 
 
For all Scheme programming problems use recursion and functional operations.  No 
loops; no assignment (set! and its relatives). 
 
You may also assume that the data or arguments to all functions are as specified and you 
do not need to check for errors (e.g., don’t add code to deal with non-numbers when the 
data is specified to be a list of integers, or nested lists if the data is supposed to be a 
simple list, but do handle these things if the problem specifies it). 
 
Advice You have 50 minutes, do the easy questions first, and work quickly! 

 
Total:  100 points. 

 
Question Max Points Score 

1 14  
2 10  
3 3  
4 12  
5 15  
6 15  
7 15  
8 16  

Total 100  
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1. [14 pts.] Suppose we enter the following top-level definitions into a Scheme 
interpreter. 
 

(define a 100) 
(define b '(100 62)) 
(define c 47) 
(define (apples a) (odd? a)) 
(define (pie a) (apples (- 3 a))) 
(define book (lambda (a) (> a c))) 

 
What is the value of each of the following expressions, given that the above definitions 
are in effect? If evaluating the expression produces an error, explain what is wrong. 
 

a) (cons a b)  =>  (100 100 62) 
 
 

b) (cons b b)  =>  ((100 62) 100 62) 
 
 

c) (append a b)  =>   
 
append: expected argument of type <proper list>; given 
100 
 

d) (book 13)  =>  #f 
 
 

e) (apples 12)  =>  #f 
 
 

f) (map apples b)  => (#f #f) 
 
 

g) (map pie '(7 8 9))  => (#f #t #f) 
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2. [10 pts.]  For each of the following sections, draw a boxes-’n-arrows diagrams as 
requested showing the final result after executing all of the expressions in that section.  
After each diagram, answer the questions about the printed representations of some of the 
values defined. 
 
(a) (define x ′(z (x y) 3)) 
 (define y (list x (car x))) 

(define z (cdr (car y))) 
 (define w (cons 5 (cdr x))) 
 
Draw the boxes and arrows diagram for x: 
 
 
 
 
 
 
 
 
 
 
What are the printed values of x, y, z, and w? 
 

x = (z (x y) 3) 
y = ((z (x y) 3) z) 
z = ((x y) 3) 
w = (5 (x y) 3) 

 
(b) (define a ′(1 2 3)) 
 (define b (append (cdr a) (cons (car a) ′()))) 
 
Draw the boxes and arrows diagram for b: 
 
 
 
 
 
 
 
 
 
What is the printed values of a and b? 
 

(1 2 3) 
(2 3 1) 
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3. [3 pts.]  Suppose we enter the following definitions: 
 
 (define x 100) 
 (define y 7) 
 
What is the value of the following expression? 
 
(let* ((x (+ x y)) 
   (y (- x y))) 
 (- x y)) 
 
 Answer : 7 
 
 
4.  [12 pts.]  Suppose we enter the following definitions: 
 
 (define k 5) 
 (define foo (lambda (n) 
                  (lambda (w) (+ k n w)))) 
 
Describe the value of each of the following expressions.  If the value is something simple 
like an integer, just write it down.  If the value is a procedure (function closure), describe 
the closure precisely: what is the procedure code, and what environment bindings are 
included in the closure?  If something is wrong with the expression, describe the error. 
 
(a)  (foo 3) 
 
 A function closure.  Code: (lambda (w) (+ k n w))  
  Bindings: n is bound to 3.  (k is not bound to 5 at this time) 
 
 
(b) ((foo 3) 7) 
 
 15 
 
 
(c) ((foo 3) k) 
 
 13 
 
 
(d) (((foo 3) 7) 2) 
 
 An error.  ((foo 3) 7) returns the value 15.  What is expected is a procedure 
 that can be applied to the argument 2. 
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5.  [15 pts.]  Write a Scheme function remove-odd that takes a list of integers as an 
argument and returns the same list with all of the odd numbers removed.  Examples: 
 
 (remove-odd '(-10 6 5 0 5 -3 21 68)) => (-10 6 0 68) 
 (remove-odd '(100)) => (100) 
 (remove-odd '()) => () 
 

(define (remove-odd alist) 
  (cond ((null? alist) '()) 
        ((odd? (car alist)) (remove-odd (cdr alist))) 
        (else (cons (car alist)  
    (remove-odd (cdr alist)))))) 
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6.  [15 pts.]  Write a Scheme function findmax that takes a list of integers as an 
argument and returns the largest value in the list.  It should return false if given the empty 
list.  You may find it useful to write a helper function.  Examples: 
 

(findmax '(-10 6 25 0 105 -3 21 68)) => 105 
(findmax '()) => #f 
(findmax '(10 600 25 -5 -3 21 77)) => 600 
 
 
(define (findmax-helper alist max) 
  (cond ((null? alist) max)  ; reached end of list 
        ((> (car alist) max) ; found new max 
         (findmax-helper (cdr alist) (car alist))) 
        ; car is no bigger than current max 
        (else (findmax-helper (cdr alist) max)))) 
 
(define (findmax alist) 
  (if (null? alist) #f 
      (findmax-helper (cdr alist) (car alist)))) 
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7. [15 pts.]  Write a Scheme function count that takes two arguments, an integer and list 
of integers, and counts how many occurrences there are of the integer in the list.  The list 
could be the null list or a nested list.  If it is a nested list you must recursively count the 
number of occurrences in all sub-lists.  (Hint: the pair? predicate can be used to test 
whether something is a non-empty list.)  Use = to test for equality of integers.  For 
example: 

 
(count 4 '(6 8 4 3 45 4))  => 2 
(count 5 '((5 (5 4) 4) (3))) => 2  
(count 4 '()) => 0 
(count 4 '(3 ((43 4)) (4) (6 9 10 4))) => 3 
 
 
(define (count num alist) 
  (cond ((null? alist) 0)    ; alist is a null list 
        ((pair? (car alist)) ; car is a non-null list 
         (+ (count num (car alist)) 
            (count num (cdr alist)))) 
        (else                ; car is an integer 
         (if (= num (car alist)) 
             (+ 1 (count num (cdr alist))) 
             (count num (cdr alist)))))) 

 
Shorter: 

 
(define (count num alist) 
  (cond ((eqv? num alist) 1) ; alist is the value 
        ((pair? alist) ; alist is a non-null list 
  (+ (count num (car alist))  
   (count num (cdr alist)))) 
        (else 0))) 
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8.  [16 pts.]  Consider the following C program (which compiles and runs without errors): 
#include <stdio.h> 
 
void mystery(int* x, int* y, int z) { 
  int *s = x; 
  *x = z + 17; 
  z = *y - 2; 
  /* (a) draw picture at this point */ 
  printf("In mystery: *x=%d, *y=%d, z=%d, *s=%d\n", *x, *y, z, *s); 
} 
 
void curious(int* x) { 
  int b; 
  b = 500; 
  printf("In curious, before mystery: *x=%d, b=%d\n", *x, b); 
  mystery(&b, x, b); 
  printf("In curious, after mystery: *x=%d, b=%d\n", *x, b); 
} 
 
int main() { 
  int x; 
  x = 10; 
  curious(&x); 
  printf("In main: x=%d\n", x); 
  return 0; 
} 
 
(a) Draw a diagram with boxes for each active function showing the situation right when 
execution reaches the printf statement in function mystery.  Be sure to show the 
values of all of the variables in each active function.  If a variable is a pointer to another 
variable, indicate its value by drawing an arrow between the variable name and the 
storage location (variable) that it points to. 
 
 
 
 
 
 
 
 
 
 
 
(b) What output is produced when this program is executed?  If an address is printed out, 
please make up an address and label the appropriate box in your picture above with that 
address.  (Don’t worry about writing out the exact details of each message, but we should 
be able to tell which values you are printing where.) 
 

In curious, before mystery: *x=10, b=500 
In mystery: *x=517, *y=10, z=8, *s=517 
In curious, after mystery: *x=10, b=517 
In main: x=10 


