
CSE 413 Final Exam, December 13, 2012 Page 1 of 12

CSE 413 Final Exam

December 13, 2012

Name ______________________________________

The exam is closed book, closed notes, no electronic devices, signal flags, tin-can telephones, or other
signaling or communications apparatus.

Style and indenting matter, within limits. We’re not overly picky about details, but we do need to be
able to follow your code and understand it.

Please wait to turn the page until everyone has their exam and you have been told to begin. If you have
questions during the exam, raise your hand and someone will come to you. Don’t leave your seat.

Advice: The solutions to many of the problems are short. Don’t be alarmed if there is a lot more room
on the page than you actually need for your answer.

More gratuitous advice: Be sure to get to all the questions. If you find you are spending a lot of time on
a question, move on and try other ones, then come back to the question that was taking the time.

1 / 10

2 / 12

3 / 6

4 / 8

5 / 12

6 / 10

7 / 14

8 / 18

9 / 6

10 / 4

Total / 100

CSE 413 Final Exam, December 13, 2012 Page 2 of 12

Question 1. (10 points) Regular expressions I. Describe the set of strings generated by each of the

following regular expressions. For full credit, give a description of the sets like “all sets of strings made

up of a’s, b’s, and c’s with 4 a’s and at least as many b’s as a’s”. Don’t just transcribe the expressions

from regular expression notation into English.

(a) (ab)*(bc)*

(b) ((a|b)+ c)*

CSE 413 Final Exam, December 13, 2012 Page 3 of 12

Question 2. (12 points) Regular expressions II. Write a regular expression or set of regular expressions

that generate the following sets of strings.

Fine print: You may use basic regular expressions (sequences rs, choice r|s, and repetition r* and parentheses for

subexpressions). You may also use + (one or more) and ? (zero or one), and character classes like [ax-z] and [^abc],

but you may not use additional regular expression operators that might be found in various programming

languages and software tools. You also may use named abbreviations like “vowels = [aeiou]” if these help.

(a) All non-empty strings of 0’s and 1’s such that the number of 1’s is even if there are any 1’s in the

string. (There are no other restrictions on the positions of the 1’s in the string other than the total

number of 1’s needs to be even.).

(b) Ruby identifiers. A Ruby identifier is a sequence of letters, digits, and underscores. An ordinary

identifier may not begin with a digit. Identifiers may be preceded by $, @, or @@ to indicate global,

instance, or class variables. The character following $, @, or @@ may not be a digit. An identifier may

also end with one of the characters ?, !, or =.

CSE 413 Final Exam, December 13, 2012 Page 4 of 12

Question 3. (6 points) The C family of languages (including Java) has prefix and binary + and -

operators, as well as increment and decrement operators ++ and -- that can appear either before or

after an expression or sub-expression. The languages also include the other usual kinds of tokens,

including identifiers, reserved words, and numbers.

How would a scanner for a language like Java divide the following input into tokens? Draw a box around

each set of characters that make up a token. You should assume that these characters are adjacent to

each other. We have added some space to make it easier to draw boxes, and the first box is drawn for

you. (Remember that we’re only asking about how the scanner would divide this sequence of

characters into tokens, not whether they make any sense as part of a C or Java program.)

 1 2 + a + + + = = 4 2 t h i n g s 17 - 1 + f i f ;

Question 4. (8 points) Give a context-free grammar that generates all strings of a’s and b’s that are not

empty and are palindromes – that is, the string reads the same backwards as forwards. A few strings in

this set are a, b, aa, bb, aaa, bbb, aba, bab, aaaa, abba, etc.

CSE 413 Final Exam, December 13, 2012 Page 5 of 12

Question 5. (12 points) Consider the following gammar

 expr ::= a | a subs

 subs ::= [expr] | [expr] subs

(a) (4 points) What are the terminals and non-terminals of this grammar?

 Terminals:

 Non-terminals:

(b) (5 points) Draw the parse tree for a[a][a]

(c) (3 points) Describe in English the set of strings generated by this grammar.

CSE 413 Final Exam, December 13, 2012 Page 6 of 12

Question 6. (10 points) In most of the languages descended from C, the syntax for function calls uses

parentheses around the argument list, while array subscripts are indicated with brackets around each

individual subscript. In some other languages like Fortran parentheses are used for both function calls

and array subscripts, and subscripts for multiple-dimension arrays are given in a single list of expressions

inside a single pair of parentheses. For instance, the C statement ans=b[i][j]*sin(theta)

would be written as ans=b(i,j)*sin(theta) in Fortran.

Here is part of an expression grammar for Fortran that includes function calls and array references:

 exp ::= term | exp + term | exp - term

 term ::= factor | term * factor | term / factor

 factor ::= id | number | (exp)| funcall | arrayref

 funcall ::= id (explist) | id ()

 arrayref ::= id (explist)

 explist ::= exp | explist , exp

(a) (7 points) Show that this grammar is ambiguous.

(b) (3 points) A compiler for Fortran has to be able to analyze and understand programs in spite of this

ambiguity. Suggest one way that this might be done (and the solution might involve other parts of the

compiler, not just the parser).

CSE 413 Final Exam, December 13, 2012 Page 7 of 12

Question 7. (14 points) The local library would like your help to write a Ruby program to print

information about overdue books. The input to the program is a simple text file. The first line is the

current date in the format yyyymmdd, where yyyy is the year, mm is the month, and dd is the date. For

example, today’s date, Dec. 13, 2012, would be written 20121213. The rest of the file contains

information about checked-out books. There are three lines in the file for each book giving the book

title, the borrower’s name, and the due date. Here’s an example with three books, two of which are

overdue (due before the date given at the beginning of the input):

 20121213

 50 Shades of Ruby

 A. Turing

 19361112

 Naughty and Nice

 S. Clause

 20121225

 Bored of the Rings

 P. Jackson

 20121128

Write a Ruby program that reads data from standard input in this format and prints the following:

 For each overdue book, print the due date, borrower’s name, and book title on a single line, in

that order with a comma between the name and title.

 After reading all of the input, print a list of names of the borrowers who have one or more

overdue books. The list may be in any order. The name of each borrower in the list should be

printed only once even if they have several overdue books, and each name should be on a

separate line.

Here is the output for the above sample input (the order of the last two lines could also be reversed):

 19361112 A. Turing, 50 Shades of Ruby

 20121128 P. Jackson, Bored of the Rings

 A. Turing

 P. Jackson

For full credit you should use Ruby iterators like each to process the contents of any containers like

arrays or hashes. Recall that if h is a hash, you can iterate through its key/value pairs with

h.each {|key, value| ... }

Hint: The date format was chosen so that dates could be compared as strings without having to convert

them to numbers. But you do not have to do it that way if you don’t want.

Write your code on the next page. If you find it helpful, you can remove this page from the exam for

reference while you are working.

CSE 413 Final Exam, December 13, 2012 Page 8 of 12

Question 7. (cont.) Write your code here:

CSE 413 Final Exam, December 13, 2012 Page 9 of 12

Question 8. (18 points) The programming languages we’ve seen this quarter write arithmetic

expressions in two quite different ways. Racket uses prefix notation, where each operator appears first

followed by its operands. Ruby uses the more traditional infix notation, where binary operators are

written between their operands. For example, the infix expression (2+3)*(9-6) is written in prefix

notation as (* (+ 2 3) (- 9 6)).

There is another notation for arithmetic expressions called postfix notation, where each operator

follows its operands, i.e., the infix expression exp1 op exp2 is written in postfix as exp1 exp2 op. For

example, the above expression would be written in postfix as 2 3 + 9 6 - * . Interestingly enough,

postfix expressions do not require parentheses to indicate either associativity or precedence.

Expressions are evaluated from left to right, and when an operator (+, *, etc.) is encountered, the two

operands immediately to its left are combined using the operator, and the result replaces all three.

For this problem write a Ruby parser to translate an infix expression to postfix. The parser should read

input tokens from a scanner, as in our project, and print the postfix version of the expression – it should

not evaluate it. Here is the input expression grammar.

 exp ::= term | exp + term | exp - term

 term ::= factor | term * factor | term / factor

 factor ::= id | number | (exp)

Here are some more examples of infix to postfix translations. (Remember that the rule is that exp1 op

exp2 is translated to exp1 exp2 op, even when exp1 or exp2 are themselves complex expressions.)

 Infix Postfix Comment

 2+3+4 2 3 + 4 + Same as (2+3)+4

 2+(3+4) 2 3 4 + +

 (a+b)*c a b + c *

 a*(b+c) a b c + *

 (5-y)*(x+3) 5 y - x 3 + *

You should assume the following as you write your solution:

 There is a method next_token that returns a new Token object with the next input token

each time it is called. There is a global variable current_token that contains the first Token

in the expression when your parser procedure for exp is first called.

 If t is a Token object, t.kind returns the token kind, which is either “ID”, “Number”, or one

of the terminal symbols "+", "-", "*", "/", "(", or ")". If t.kind returns “ID” or

“Number”, then t.value returns the actual identifier or number.

 There are no end-of-file or end-of-line tokens. The parser should stop once it has processed a

complete expression (i.e., printed the postfix version of a single expression).

Hint: All that is required is to print out the tokens in the correct final order.

Write your answer on the next page(s). You may detach this page for reference if you wish.

CSE 413 Final Exam, December 13, 2012 Page 10 of 12

Question 8. (cont.) Write your Ruby code for the infix-to-postfix parser/translator here.

(more room on the next page if you need it)

CSE 413 Final Exam, December 13, 2012 Page 11 of 12

Question 8. (cont.) (Additional space for your answer if you need it.)

CSE 413 Final Exam, December 13, 2012 Page 12 of 12

A couple of short questions to wrap up. Please keep your answers brief and to the point (and legible!!).

Your readers thank you.

Question 9. (6 points) Java has interfaces as well as classes, and a class can implement multiple

interfaces. Neither Ruby nor C++ have interfaces, but for quite different reasons.

(a) Why are there no Java-style interfaces in Ruby? Give a technical reason why interfaces would not be

appropriate and/or needed in this language.

(b) Why are there no Java-style interfaces in C++? Again, give a technical reason why interfaces would

not be appropriate and/or needed in this language.

Question 10. (4 points) One of the classic strategies for automatic memory management is reference

counting. Yet reference counting is not used as the normal strategy for reclaiming memory in languages

like Java, Ruby, and Racket, all of which use automatic garbage collectors. What is the main technical

reason that reference counting cannot be used if we want to reclaim all unused memory?

Best wishes for the holidays and the New Year!!

