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CSE 413 Final Exam 

June 7, 2011 
 

Name ______________________________________ 
 
 

The exam is closed book, except that you may have a single page of hand-written notes for reference 
plus the page of notes you had for the midterm (although you are unlikely to need that one). 
 
Style and indenting matter, within limits.  We’re not overly picky about details, but we do need to be 
able to follow your code and understand it. 
 
Please wait to turn the page until everyone has their exam and you have been told to begin.  If you have 
questions during the exam, raise your hand and someone will come to you.  Don’t leave your seat. 
 
Advice:  The solutions to many of the problems are short.  Don’t be alarmed if there is a lot more room 
on the page than you actually need for your answer. 
 
More gratuitous advice: Be sure to get to all the questions.  If you find you are spending a lot of time on 
a question, move on and try other ones, then come back to the question that was taking the time. 
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Question 1. (10 points)  Regular expressions I.  Describe the set of strings generated by each of the 

following regular expressions.  For full credit, give a description of the sets like “all sets of strings made 

up of a’s, b’s, and c’s with 4 a’s and at least as many b’s as a’s”.  Don’t just transcribe the expressions 

from regular expression notation into English. 

 

(a)   0(10)* | 1(01)* 

 

 

 

 

 

 

 

 

(b)  ( (0|1)* (2|3)+ )+ 
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Question 2. (12 points) Regular expressions II.  Write a regular expression or set of regular expressions 

that generate the following sets of strings. 

Fine print:  You may use basic regular expressions (sequences rs, choice r|s, and repetition r* and parentheses for 

subexpressions).  You may also use + (one or more) and ? (zero or one), and character classes like [ax-z], but you 

may not use additional regular expression operators that might be found in various programming languages and 

software tools.  You also may use named abbreviations like “vowels ::= *aeiou+” if these help. 

(a) All strings of a’s, b’s, and c’s that have at least one character and have the property that all of the c’s 

(if any) appear to the right of all of the a’s (if any).  Examples of such strings: a, b, abba,  bcb, acc, 

ababbcb.  Examples of strings that are not in the set: ca, abbacbccbbabc. 

 

 

 

 

 

 

 

(b) Ruby-like integers written as either decimal or binary integer literals.  A decimal integer is any string 

of one or more digit characters (0-9).  A binary integer begins with the characters 0b or 0B and is 

followed by one or more 0’s and 1’s.  Examples of binary integer literals: 0b0, 0B1, 0b001011000.  
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Question 3.  (8 points)  Suppose we are writing a scanner for Java (or, for the purposes of this question, 

it could be C or C++).  The scanner needs to recognize identifiers, reserved words, operators, 

punctuation, and so forth. 

(a)  Suppose we have the following characters in the input, with spacing as shown: 

 if thing == x = ret urn + 1 

List below the tokens that would be recognized by a Java scanner as it reads this input.  (Remember that 

the scanner does not care whether the sequence of tokens it returns makes up a sensible program.) 

 

 

 

 

 

 

 

 

(b) Now suppose we scan exactly the same input, but with all spaces omitted.  What tokens would be 

returned by the scanner as it reads this altered input? 

 ifthing==x=return+1 
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Question 4.  (8 points)  Give an unambiguous context free grammar that generates Scheme lists 

containing identifiers and balanced sets of parentheses and square brackets.  Identifiers may only occur 

inside of parentheses or brackets.  Examples: (a),  [b c], ([(a)]), (a ((b c) d)), (a b c),  

(let ([x y] [p q]) (x p)). Non examples and reasons why not:  a (no parentheses or 

brackets), (a b (c)  (mismatched parentheses), (a [b c))  (improper nesting). 

You should assume that id is a non-terminal that stands for an arbitrary identifier.  You do not need to 

worry about including specific identifiers like a or b.  You also do not need to worry about whitespace – 

assume that if you generate the sequence  id id id there would be appropriate whitespace to avoid 

any ambiguities. 
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Question 5.  (8 points)  Here is a grammar for simplified Ruby method calls.  A method call has a receiver 

object (an expression), a method name, an optional single parameter, and is optionally followed by a 

block.  A block contains a statement and an optional parameter. 

 expr  ::=  id  |  expr . id  optparm  optblock 

 optparm  ::=  ε  |  ( expr ) 

 optblock ::= ε  | { stmt } | {| id | stmt }  

 stmt ::= puts id | gets  

The non-terminal id can derive any identifier (sequence of letters).  The symbol ε is the Greek letter 

epsilon, denoting the empty string.  Note that the vertical bars (||) surrounding id in a block are literal 

symbols, not the “choice” or alternative symbols found elsewhere in the grammar rules. 

Draw the full parse tree showing the derivation of this expression:      words.each {|x| puts x} 
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Question 6. (12 points)  Dynamic dispatch (otherwise known as virtual function calls) 

Consider the following Java program: 

class A { 

    void f() { g(); System.out.println("A::f"); } 

    void g() {      System.out.println("A::g"); } 

} 

 

class B extends A { 

    void h() { g(); System.out.println("B::h"); } 

    void g() {      System.out.println("B::g"); } 

} 

 

class C extends B { 

    void g() {      System.out.println("C::g"); } 

    void f() { h(); System.out.println("C::f"); } 

} 

 

class Dispatch { 

   public static void main(String[] args) { 

 A thing1 = new B(); 

 B thing2 = new C(); 

 C thing3 = new C(); 

 

 /* Part (a) (see next page) Complete the diagram showing objects,  

    vtables, and methods at this point during execution. */ 

 

 thing1.f(); 

 System.out.println("---"); 

 thing2.f(); 

 System.out.println("---"); 

 thing3.h(); 

   } 

} 

 

Answer questions about this program on the next page.  You can remove this page for convenience 

while you work on the problem. 

 

 

 



CSE 413 Final Exam, June 7, 2011 Page 8 of 14 

Question 6. (cont)  (a) In lecture we talked about the virtual function table mechanism used to connect 

objects, classes, and methods in statically typed object-oriented languages like Java and  C++.  The 

variables declared in the main method, the objects they reference, the method code from the various 

classes, and the virtual function table (vtable) for class A are shown.  You should complete this diagram 

to show the additional tables and connections that exist when execution of the program reaches the 

point shown by the comment in the middle of the main method on the previous page. 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) What output does this program produce when it is executed?  (Hint: your answer to part (a) might be 

useful in following the execution to get the right answer.)

 

thing1 

thing2 

thing3 

 

main 

vtbl 

other 

data 

vtbl 

other 

data 

vtbl 

other 

data 

f 

g 

A vtable A::f code 

A::g code 

B::h code 

B::g code 

C::g code 

C::f code 
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Question 7.  (12 points) Write a Ruby program that reads text from standard input and searches for 

words in the input.  The first line of the input is the list of words to look for.  The remaining lines should 

be examined to see if they contain any of the words in the given list.  If any of the words are found, the 

line containing them should be printed out preceded by its line number.  For example, if the input is 

how now brown cow 

old macdonald had a farm 

e-i-e-i-o 

that farm was on a brown dirt road 

and on that farm he had a cow 

cowabunga said old macdonald 

the output should be 

 3: that farm was on a brown dirt road 

 4: and on that farm he had a cow 

since line 3 contains the word “brown” and line 4 contains the word “cow”.  Line 5 is not included in the 

output because none of the words in the search list match a word in that line, even though “cow” is a 

substring of “cowabunga”.  The initial line containing the words to search for is numbered as line 0; 

successive lines are numbered from 1.  Each input line should be printed at most once in the output, 

even if it contains several copies of words in the search list.   

To simplify things, you should read the input one line at a time with gets and use the String split 

method to break each line into words.  The basic behavior of split is to return an array of the words, 

where words are defined as strings of characters separated by whitespace.  Example: 

 “one two three”.split   =>  [“one”, “two”, “three”] 

To keep the problem simple, assume that there is no extra leading or trailing whitespace in the input 

lines, and assume that all words in the input contain only lower case letters, so you don’t have to deal 

with issues of punctuation or capitalization. 

For full credit you should use Ruby iterators like each to process the contents of containers like arrays 

and hashes. Recall that if h is a hash, you can iterate through its key/value pairs with  

h.each {|key, value| ... } 

Write your code on the next page.  If you find it helpful, you can remove this page from the exam for 

reference while you are working. 

 

  Next page please….
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Question 7. (cont.)  Code for the word search program: 
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Question 8.  (20 points) One of our clients would like us to extend the calculator language and 

interpreter to add a function to compute the maximum value of one or more expressions.  For instance, 

max(1+2) would evaluate to 3, and max(17, 3-42, 5) would evaluate to 17.  Of course variables 

could also appear in expressions, as in the original calculator language.  For reference, here is the 

original calculator grammar (although you may not need to use it): 

 program ::= statement | program statement 

 statement ::= exp | id = exp | unset id | list | quit | exit 

 exp ::= term  |  exp + term  |   exp - term 

 term ::= power  |  term * power | term / power 

 power ::= factor  |  factor ** power  

 factor ::= id  |  number  |  ( exp ) | sqrt ( exp ) 

One of those pesky summer interns proposes adding this new max function to the calculator language 

by adding an alternative to the rule for factor and adding an additional rule to handle the max function 

parameter lists: 

 factor  ::=  ...  |  max ( explist ) 

 explist  ::=  explist , explist  |  exp 

(a) Show that the original grammar with these additions is now ambiguous.  (Hint: you only need to 

show ambiguity for a part of a grammar that has a problem, not necessarily for all of the grammar 

rules.) 

 

 

 

 

 

 

 

 

 

 

 

(continued next page) 
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Question 8. (cont.) (b) Give a different grammar rule or rules that add the max function to the rule for 

factor and handle its parameter list, but that are not ambiguous. 

 

 

 

 

 

(c)  We would like to add this new max function to our calculator interpreter.  What changes, if any, 

need to be made to the original calculator scanner?  Describe any necessary changes to the scanner, the 

set of tokens, or anything else that must be modified.  You do not need to give the implementation, just 

describe the needed changes. 

 

 

 

 

 

(d) On the next page, write the additional Ruby code needed in method factor and any other 

necessary code needed to parse and evaluate this new max function and its parameter list.  Your answer 

should be guided by your solutions to parts (b) and (c), but, as usual, adjusted as needed for use in a 

recursive-descent parser.  You should make the following assumptions: 

 The scanner has been modified as describe above in your solution to part (c).  You can call the 

scanner’s next_token method whenever you need to get the next token from the input.  If 

for some reason you need it, the kind method of a Token object returns strings containing the 

token text like “list”, “sqrt”, “+”. 

 There is a global variable current_token that contains the next unprocessed Token in the 

input at all times.  Your code needs to update this variable appropriately as it parses the input. 

 Functions like exp exist to parse each grammar nonterminal and return its value, if any. 

 You should assume that there are no syntax errors, missing or extra tokens, or other problems in 

the calculator input. 

Write your solution on the next page.   
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Question 8. (cont.) (d)  Below, write your modifications to method factor and any other code needed to 

parse and evaluate the new max function expression. 
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A couple of short-answer questions to wrap up.  Please keep your answers brief and to the point (and 

legible!!).  Your readers thank you. 

Question 9. (5 points)  When we looked at automatic storage management, one of the algorithms we 

discussed was Generational Garbage Collection.  In the basic version of this scheme, the heap is divided 

into two parts, a “nursery”, which is the space where new objects are allocated, and the rest of the heap 

where long-lived objects are moved after a number of garbage collections.  What is the rationale for 

splitting the heap this way?  What advantage does it provide, if any? 

 

 

 

 

 

 

 

 

Question 10. (5 points)  Java includes interfaces that can be used to specify a collection of methods and 

constants.  Ruby doesn’t contain anything similar.  Would it make any sense to add interfaces to Ruby as 

a new language feature?  Why or why not? 

 

 

 

 

 

 

 

 


