Question 1. (18 points, 2 points each part) Suppose we enter the following top-level
definitions into a Scheme interpreter.

```
(define a 17)
(define b 42)
(define c 100)
(define n (list 1 (+ 1 1) (- c 1)))
(define colors '(red green blue))
(define p '((1 2) (3 4)))
(define (f b) (+ a b))
(define g (lambda (x y) (* x y)))
```

What is the value of each of the following expressions, given that the above definitions
are in effect? If evaluating the expression produces an error, explain what is wrong.

a) (car p) \[1 2\]

b) (cdar p) \[2\]

c) (cddr p) \[

d) (cddr g) error – g doesn’t have a cddr

e) n \[1 2 99\]

f) (cons (reverse (cdr colors)) p)
 \[((blue green) (1 2) (3 4))\]

g) (append (reverse (cdr colors)) p))
 \[blue green (1 2) (3 4)\)

h) (let ((a 10)
 (c (+ a 1)))
 (f c)) \[35\]

i) (let* ((a 10)
 (c (+ a 1)))
 (f c)) \[28\]
Question 2. (10 points) Write a Scheme function `divisors-of` that returns a list of numbers that exactly divide its positive integer argument. Examples:

(divisors-of 12) => (1 2 3 4 6)
(divisors-of 28) => (1 2 4 7 14)
(divisors-of 17) => (1)
(divisors-of 1) => ()

Feel free to use appropriate Scheme library functions in your solution. You can also write additional auxiliary functions if that is helpful.

;;;; simple recursion

(define (divisors-of n)
 (divisors-list n (- n 1)))

;;;; = list of all divisors of n <= val
(define (divisors-list n val)
 (cond ((< val 1) ())
 ((= 0 (modulo n val))
 (cons val (divisors-list n (- val 1))))
 (else (divisors-list n (- val 1)))))

;;;; tail-recursive version

(define (divisors-of n)
 (divisors-list-t n (- n 1) ()))

;;;; = list of all divisors of n.
;;;; theList is a list of all divisors > val
(define (divisors-list-t n val theList)
 (cond ((< val 1) theList)
 ((= 0 (modulo n val))
 (divisors-list-t n (- val 1) (cons val theList)))
 (else (divisors-list-t n (- val 1) theList))))
Question 3. (10 points) A perfect number is an integer that is the sum of its positive integer divisors. The first three perfect numbers are

- $6 = 1 + 2 + 3$
- $28 = 1 + 2 + 4 + 7 + 14$
- $496 = 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248$

Write a Scheme function `perfect-numbers` that returns a list of the first n perfect numbers. Examples:

```scheme
(perfect-numbers 0) => ()
(perfect-numbers 1) => (6)
(perfect-numbers 3) => (6 28 496)
```

You should use function `divisors-of` from question 2 when you need to calculate the divisors of a number. (Assume that it works as specified, even if you’re not sure that your solution to question 1 is entirely correct.) You can write additional helper functions if needed, and you should use functions from the standard Scheme library as needed.

```scheme
(define (sum aList)
    (if (null? aList)
        0
        (+ (car aList) (sum (cdr aList)))))

(define (is-perfect? n)
    (= n (sum (divisors-of n))))

(define (perfect-numbers n)
    (reverse (perfect-list 6 n)))

(define (perfect-list next howmany)
    (cond ((< howmany 1) ())
          ((is-perfect? next)
           (cons next (perfect-list (+ next 1) (- howmany 1))))
          (else (perfect-list (+ next 1) howmany))))

(define (perfect-numbers n)
    (reverse (perfect-list-t 6 n)))

(define (perfect-list-t next howmany theList)
    (cond ((< howmany 1) theList)
          ((is-perfect? next)
           (perfect-list-t (+ next 1) (- howmany 1) (cons next theList))
           (else (perfect-list-t (+ next 1) howmany theList))))
```
Question 4. (6 points) Suppose we have defined a list of numbers at top level:

\[
\text{(define nums '}(2 -6 4 0 9))
\]

Write a single scheme expression involving \text{nums} that evaluates to a list whose elements are each three times the corresponding values in \text{nums}. If \text{nums} is defined as above, your expression should evaluate to

\[
(6 -18 12 0 27)
\]

Here’s the catch: the expression should produce the right answer regardless of the current length of \text{nums} or the integer values in it. In other words, the literal expression \((6 -18 12 0 27)\) is not the right answer.

You \textit{may not} define any new functions (i.e., no \texttt{(define ...)} at top-level).

Hint: Lambda and higher-order functions.

\[
\text{(map (lambda (n) (* 3 n)) nums)}
\]

Question 5. (10 points) In one of the homework problems, we defined constructor and accessor functions to manipulate binary trees in Scheme. The definitions were

\[
\begin{align*}
\text{(make-node value left right)} & \Rightarrow (\text{value left right}) \\
\text{(value-of '(value left right))} & \Rightarrow \text{value} \\
\text{(left-child '(value left right))} & \Rightarrow \text{left} \\
\text{(right-child '(value left right))} & \Rightarrow \text{right}
\end{align*}
\]

A tree node is an \textit{internal node} if it is not a leaf of the tree. In other words, interior nodes have at least one child.

Write a function

\[
\text{(n-internal aTree)}
\]

that returns the number of internal nodes in \text{aTree}. If \text{aTree} is empty, \text{n-internal} should return 0. Use the accessor and constructor functions given above to manipulate the nodes in \text{aTree}.

\[
\begin{align*}
\text{(define (n-internal aTree)} \\
\text{(cond ((null? aTree) 0) (else (+ 1 (n-internal (left-child aTree)) (n-internal (right-child aTree))))})
\end{align*}
\]
CSE 413 Winter 2001 Midterm Exam

Question 6. (15 points, 3 each) A few short-answer questions about Java.

a) Methods in a class may be declared protected or private (among other things). What’s the difference between these two?

A private method can only be accessed (called) by other methods in the same class. Protected methods are also visible to methods in classes derived from the one containing the method, as well as to methods in the same class.

b) A well-written Java class should contain a toString method. What is the purpose of this method? When is it called?

Method toString should return a String that describes the state of the associated instance of a class. In addition to any explicit calls, it is called implicitly when an object is used in a string concatenation expression.

c) In Java, there is a fairly elaborate hierarchy of classes whose instances represent exceptions. Part of the hierarchy looks like this.

```java
class Exception ...
class RuntimeException extends Exception ...
class IndexOutOfBoundsException extends RuntimeException ...
class NullPointerException extends RuntimeException ...
class IOException extends Exception ...
class FileNotFoundException extends IOException ...
...
```

The question is, why does this hierarchy of exception classes exist? Why is it useful to have many different, related classes instead of a single class Exception?

The exception classes allow programs to specify different processing for different kinds of exceptions, as well as how general or specific an exception they wish to handle.
d) Several recent Java compilers have included an analysis stage that detects objects that are truly local variables inside methods. That is, they detect objects that are allocated during the execution of a method, are only used inside the method, and cannot be referenced after the method returns. Why bother to accumulate this information? How is this information used? Why is this effective?

Allocating variables on the heap, which involves dynamic allocation and garbage collection, is considerably more expensive than allocating them in the activation record associated with the function call. If we can detect variables that are only used locally, they can be allocated on the stack, bypassing the overhead of heap allocation. It is effective if many objects are used only as temporary variables, which happens frequently.

e) Suppose we have a class that represents the balance in a bank account.

class BankAccount {
 private double balance; // account balance

 public BankAccount(double initialDeposit) {
 balance = initialDeposit;
 }

 public double getBalance() { return balance; }

 public void deposit(double amount) {
 balance = balance + amount;
 }
}

Recently, a program that uses these objects has been enhanced to use multiple threads so it can process several transactions at the same time. Unfortunately, the auditors have discovered that account balances are occasionally incorrect. What’s wrong, and how could you fix it? (Getting rid of the multithreading is not an option for fixing it.)

The problem can occur when two threads attempt to update the same BankAccount at the same time. If both threads simultaneously fetch the old value, calculate a new value, and store it, one of the updates may be lost.

A solution is to change methods like deposit so they are declared synchronized. When one thread executes the method, it will grab a lock on the object, and other threads will be blocked until the lock is released when the method finishes.
Question 7. (3 points) What output does the following Java program produce when method `babble` is called?

class That {
 // return class name
 public String name() {
 return "That";
 }
}

class Thing extends That {
 public String name() {
 return "Thing";
 }

 public babble() {
 That ref = (That)this;

 System.out.println("this.name() = " + this.name());
 System.out.println("ref.name() = " + ref.name());
 System.out.println("super.name() = " + super.name());
 }
}

this.name() = Thing
ref.name() = Thing
super.name() = That
Question 8. (3 points) The following program attempts to track the coordinates of the mouse and print them to System.out. But it doesn’t compile. What’s wrong? (If there’s more than one error, identify all of them.)

import java.awt.event.*;

public class Cat implements MouseMotionListener {
 showMouseCoordinates(int x, int y) {
 System.out.println("mouse x = \" + x + ", y = \" + y);

 public void MouseMoved(MouseEvent e) {
 showMouseCoordinates(e.getX(), e.gety());
 }

 public void MouseDragged(MouseEvent e) {
 showMouseCoordinates(e.getX(), e.gety());
 }

 public static void main(String [] args) {
 addMouseMotionListener(this);
 }
}

There are three errors:

1) Reference to “this” in a static method (main).
2) addMouseMotionListener is not defined (Cat doesn’t extend Component or one of its subclasses).
3) showMouseCoordinates has no result type.