
CSE 413 Autumn 2008

Ruby Classes,
Modules & Mixins

O i i L () POrganizing Large(r) Programs

Issues
Need to divide code into manageable piecesNeed to divide code into manageable pieces
Want to take advantage of reusable chunks of
code (libraries, classes, etc.)(, ,)

Strategy: Split code into separate files
Typically one or more classes per fileTypically, one or more classes per file
But what if the parts don’t really form a class?

N & M d lNamespaces & Modules

Idea: Want to break larger programs into
pieces where names can be reused p
independently

Avoids clashes combining libraries written byAvoids clashes combining libraries written by
different organizations or at different times

Ruby solution: modulesRuby solution: modules
Separate source files that define name
spaces, but not necessarily classesspaces, bu o ecessa y c asses

E lExample (from Programming Ruby)

module Trig
PI = 3.14
def Trig sin(x)

module Moral
VERY_BAD = 0

def Trig.sin(x)
…

end

BAD = 1
def Moral.sin(badness)
#

def Trig.cos(x)
…

d

…
end

endend
end

end

U i M d lUsing Modules

…
require ‘trig’

Key point: Each
module defines a
namespacerequire ‘moral’

y = Trig.sin(Trig::PI/4)
M l i (

namespace
No clashes with same
names in other

penance = Moral.sin(
Moral::VERY_BAD)

#

modules
Module methods are
a lot like class# … a lot like class
methods

Mi iMixins

Modules can be used to add behavior to
classes – mixins

Define instance methods and data in module
“include” the module in a class – incorporates
th d l d fi iti i t th lthe module definitions into the class

Now the class has its original behavior plus
whatever was added in the mixin

Provides most of the capabilities of multiple
inheritance and/or Java interfaces

E lExample
module Debug

def trace
#

class SomethingElse
include debug
…

end
end

…
end

class Something
include debug
#

Both classes have the
trace method defined,
and it can interact with # …

end
other methods and data
in the class

E l iti Mi i C blExploiting Mixins – Comparable

The real power of this is when mixins
build on or interact with code in the
classes that use them
Example: library mixin: ComparableExample: library mixin: Comparable

Class must define operator <=>
(a <=> b returns -1 0 +1 if a<b a==b a>b)(a < > b returns 1, 0, +1 if a<b, a b, a>b)

Comparable uses <=> to define <, <=, ==, >=,
>, and between? for that class, and between? for that class

A th l E blAnother example – Enumerable

Container/collection class provides an
each method to call a block for each item
in the collection
Enumerable module builds many
mapping-like operations on top of this

map, include?, find_all, …
If items in the collection implement <=> you
also get sort, min, max, …

