Ruby Classes,

Modules & Mixins

"
Organizing Large(r) Programs

m |ssues

Need to divide code into manageable pieces

Want to take advantage of reusable chunks of
code (libraries, classes, etc.)

m Strategy: Split code into separate files
Typically, one or more classes per file
But what if the parts don'’t really form a class?

Namespaces & Modules

m [dea: Want to break larger programs into
pieces where names can be reused
Independently

Avoids clashes combining libraries written by
different organizations or at different times

m Ruby solution: modules

Separate source files that define name
spaces, but not necessarily classes

Example (from Programming Ruby)

module Trig
Pl=3.14
def Trig.sin(x)
...
end
def Trig.cos(x)
...
end
end

module Moral

VERY_BAD =0
BAD =1
def Moral.sin(badness)
#...
end
end

Using Modules

... m Key point: Each
require ‘trig’ module defines a
require ‘moral’ namespace

— Triq i L No clashes with same
y = Trig.sin(Trig::Pl/4) names in other

penance = Moral.sin(modules

Moral::VERY_BAD) m Module methods are
... a lot like class
methods

» BN
MIXINS

m Modules can be used to add behavior to
classes — mixins

Define instance methods and data in module

“Include” the module in a class — incorporates
the module definitions into the class

= Now the class has its original behavior plus
whatever was added in the mixin

Provides most of the capabilities of multiple
iInheritance and/or Java interfaces

" J
Example

module Debug

def trace
#" ...

end

end

class Something
Include debug
..

end

class SomethingElse
Include debug
...
end

m Both classes have the
trace method defined,
and it can interact with
other methods and data
In the class

Exploiting Mixins — Comparable

m The real power of this Is when mixins
build on or interact with code In the
classes that use them

m Example: library mixin: Comparable

Class must define operator <=>
m (a<=>Dbreturns -1, 0, +1 if a<b, a==Db, a>b)

Comparable uses <=> to define <, <=, ==, >=
> and between? for that class

"
Another example — Enumerable

m Container/collection class provides an
each method to call a block for each item
In the collection

m Enumerable module builds many
mapping-like operations on top of this

map, include?, find_all, ...

If items In the collection implement <=> you
also get sort, min, max, ...

