q More Smalltalk

CSE 413: Programming Languages
Michael Ringenburg
miker@cs.washington.edu

i Review - A Stack Class

Object subclass: #Stack
instanceVariableNames: ‘anArray top’
classVariableNames: ‘’
poolDictionaries: ‘'’
category: ‘CSE 413-Stack Example’

i Stack Methods

push: item
top := top + 1.
anArray at: top put: item

top —
pop
| item |
item := anArray at: top.
top := top - 1.
“item

i Today’s Plan

= Brief review of Wednesday’s lecture

= Blocks and control structures

= Self, super, inheritance and dynamic
dispatch

= A Smalltalk case study in object-
oriented design

i Stack Methods

push: item
top := top + 1.
anArray at: top put: item

pop

| item | top —>
item := anArray at: top.

top := top - 1.

“item

i Stack Methods

push: item
top := top + 1.
anArray at: top put: item

top —
pop
| item |
item := anArray at: top.
top := top - 1.
“item



Stack Methods

push: item
top := top + 1.
anArray at: top put: item

top —
pop
| item |
item := anArray at: top.
top := top - 1.
“item

What If The Array Is Full?

top —
push: item P

top := top + 1.
anArray at: top put: item

pop
| item |
item := anArray at: top.
top := top - 1.
“item

Adding Error Checking

push: item

| save |
top := top + 1.
top > anArray size ifTrue:

[save := anArray.

anArray := Array new: 2 * save size.

1 to: save size do:

[:k | anArray at: k put: (save at: k)]].

anArray at: top put: item

Stack Methods

push: item
top := top + 1.
anArray at: top put: item

pop
| item | top —>
item := anArray at: top.
top := top - 1.

~item

What If The Array Is Full?

top —>

push: item
top := top + 1.
anArray at: top put: item

pop
| item |
item := anArray at: top.
top := top - 1.
“item

Blocks

= Blocks are Smalltalk objects that
contain unevaluated code.

= The unevaluated code in a block may
take arguments.

= Blocks can be passed around as
arguments to messages.

= Syntax for blocks:

[ :argl :arg2 | <statement sequence> ]



i Example Blocks i Block Details

) ) ) ) = Sending the value message to a block
[ :iteml :item2 | iteml print . causes the code to be evaluated.
item2 print ] = [‘hello world’] value
= [:x :y | x + y] value:1 value:3
s [:X :y :z|x+y+z] valueWithArguments:
#(1 5 6)
= If a block takes more than 4 arguments, we must
use the valueWithArguments form.
= Evaluated blocks return the result of their last
expression (unless they contain a return(*)—
see next slide).

[ :i | x :=x+ 1]
[ :x :y | x+y 1

[ ‘hello world’ ]

i Block Scoping i Block Scoping

foo: aBlock bar foo: aBlock bar
| xy | | x y z] | xy | | x y z]
y := 3. x := 10. y = 3. x := 10.
X := 5. y := 11. X := 5. y := 11.
aBlock value z := self foo:[x := y] aBlock value z := self foo:["5]
tx ~x tx tx
= Blocks are lexically-scoped: = Blocks are lexically-scoped:
= Variables bindings are determined by the scope = Variables bindings are determined by the scope
the block is created in, not the scope the block is the block is created in, not the scope the block is
evaluated in. evaluated in.
= Returns (") cause the method the block was = Returns (*) cause the method the block was
created in to return. created in to return.

i Control Structures i ifTrue and ifFalse messages

= Control structures in Smalltalk are

. Example:

implemented as messages that take blocks P

as arguments. x = 0 ifTrue: [‘Can’t divide by 0’ print]
= Conditionals are implemented as messages ifFalse: [y := 1.5 / x]

to instances of the True and False classes.

= While loops are implemented as messages to
blocks that evaluate to true or false. ifTrue: block ifFalse: block
= For loops are implemented as messages to ~ block value ~ nil
integer objects.

Methods for True class:

ifTrue: tBlock ifFalse: fBlock
~ tBlock value



it Class Exercise ii Class Exercise

Class exercise - implement the corresponding methods Class exercise - implement the corresponding methods
For the False class: For the False class:
ifTrue: block ifFalse: block
* nil * block value

ifTrue: tBlock ifFalse: fBlock
~ fBlock value

i whileTrue and whileFalse i whileTrue and whileFalse

Example: Example:

[x < 10] whileTrue: [x print. x := x+1] [x < 10] whileTrue: [x print. x := x+1]

[x < 0] whileFalse: [y := y+l. X := x-2] [x < 0] whileFalse: [y := y+l. X := x-2]
The whileTrue method for Block class: The whileFalse method is analogous:

whileTrue: bodyBlock whileFalse: bodyBlock

self value self value
ifTrue: [bodyBlock value. ifFalse: [bodyBlock value.
self whileTrue: bodyBlock]. self whileFalse: bodyBlock]

i For Loops i Inheritance

= For loops in Smalltalk use the to and do = Subclasses inherit all variables and methods
messages. from their superclass.

= The to message creates a collection = So, we could create a 3D point class from the
contgmmg all the integers between the 2D point class as follows:
receiver and the argument.

= The do message iterates over a collection. Point subclass: #Point3D
Each iteration uses the next element of the instanceVariableNames: ‘z’
collection as an argument to a value message classVariableNames: ‘originZ’
sent to the block. Example: poolDictionaries: *’

1 to: 10 do: [ :i | i print ] category: ‘CSE 413-Point Examples’



i Point3D Methods i The Answer: super!

= We can create new methods to read and set = Sending a message to super invokes a
the z-coordinate. method in the superclass.

= We also want to override (i.e., replace) the We can use super to implement
addition and scaleBy methods with methods - leBv for th % int3D FI) .
that operate on all three coordinates. Scaleby for the ol class.

= However, the existing addition and scaleBy scaleBy: factor
methods already do part of the worK—they gmc\:izlt(es thle iD super scaleBy: factor.
correctly compute the x and y coordinates. scaleby z :i= z * factor
How can we reuse this code?

Addition Fixing the problem

= We could try the same thing for addition: = To fix the problem, we need to change the
P —— addition method for 2D points:
| result | + anotherPoint
result := super + anotherPoint. | result |
result setz: z + anotherPoint getz. result := Point new.
~ result result setx: x + anotherPoint getx.
result sety: y + anotherPoint gety.
= But there’s a problem; super + invokes the ~ result
addition method of our 2D point class, which
returns a 2D point. When we try to set its z = Why does this work? Dynamic dispatch!

coordinate, a runtime error occurs!

Fixing the problem i Dynamic Dispatch

= To fix the problem, we need to change the = When we invoke a method on a receiver
addition method for 2D points: object, the self variable is bound to that
. —— object.
ano errPoin . .
| result | = Sending a message to self invokes methods
earle, o NG GREES e of self’s class—even if self isusedin a
result setx: x + anotherPoint getx. method inherited from a superclass.
result sety: y + anotherPoint gety. = In our addition example:
" result = Calling the 2D addition will return a new 2D point if

it is invoked by a 2D point.

= If, however, a 3D point invokes the 2D addition as
part of the 3D addition, a 3D point will be
returned—because self will be a 3D point.

= Why does this work? Dynamic dispatch!



i Dynamic Dispatch

= This is called dynamic dispatch
because the method to be invoked
(dispatched) is chosen at runtime based
on the class of self.

= Dynamic dispatch is a fundamental
element of object-oriented
programming. It make large-scale code
reuse by subclasses possible.

i An Abstract Interface Class

Object subclass: #Point
instanceVariableNames: ‘' ..

+ anotherPoint
| result |
result := self class new.
result setx: self getx + anotherPoint getx.
result sety: self gety + anotherPoint gety.

~ result

getx gety

setx: newX sety: newY
self subclassResponsibility self ..

(Thanks to Craig Chambers)

i A Polar Implementation

Point subclass: #PolarPoint
instancevVariableNames: ‘rho theta’ ..

getrho gettheta
~ rho * theta

setrho: newRho settheta: newTheta
rho := newRho theta := newTheta

We also need to provide the getx, setx, gety and
sety methods mentioned in the interface.

(Thanks to Craig Chambers)

i Abstract vs. Concrete Classes

= The Point class provides an interface
(the messages or methods) and an
implementation.
= We can provide more flexibility by
splitting these:
= Abstract superclasses provide methods but
no instance variables.

= Concrete subclasses provide instance
variables and additional accessor methods.

(Thanks to Craig Chambers)

i A Cartesian Implementation

Point subclass: #CartesianPoint
instancevVariableNames: ‘x y' ..

getx gety
Ay ~y

setx: newX sety: newY
X := newX y := newyY

(Thanks to Craig Chambers)

i A Polar Implementation

Point subclass: #PolarPoint
instancevVariableNames: ‘rho theta’ ..

getrho gettheta
~ rho ” theta
setrho: newRho settheta: newTheta
rho := newRho theta := newTheta
getx gety

~ ~

rho * theta sin

(Thanks to Craig Chambers)

rho * theta cos



Object-oriented Design

= Steps in building an object-oriented program:

= Identify the major data abstractions. These are
the objects.

= |dentify the major operations on the data
abstractions. These are the interfaces.

= |dentify commonalities among the abstractions,
and organize an inheritance hierarchy.

= Implement the design.
= Repeat (as necessary).

= Design for the long term—make sure it's easy
to build on and add to your design.

(Thanks to Craig Chambers)

i Summary

= Smalltalk was the first pure object-oriented
language.

= Everything is an object, and every operation
is a message send to an object.

= Blocks are objects that contain unevaluated
code, and are used to implement control
structures.

= Smalltalk is useful to study because it
contains all the key features of modern OO
languages, without much of the complexity.



