
More Smalltalk

CSE 413: Programming Languages

Michael Ringenburg

miker@cs.washington.edu

Today’s Plan

! Brief review of Wednesday’s lecture

! Blocks and control structures

! Self, super, inheritance and dynamic

dispatch

! A Smalltalk case study in object-

oriented design

Review - A Stack Class

Object subclass: #Stack
 instanceVariableNames: ‘anArray top’
 classVariableNames: ‘’
 poolDictionaries: ‘’
 category: ‘CSE 413-Stack Example’

Stack Methods

push: item
 top := top + 1.
 anArray at: top put: item

pop
 | item |
 item := anArray at: top.
 top := top - 1.
 ^item

top

Stack Methods

push: item
 top := top + 1.
 anArray at: top put: item

pop
 | item |
 item := anArray at: top.
 top := top - 1.
 ^item

top

Stack Methods

push: item
 top := top + 1.
 anArray at: top put: item

pop
 | item |
 item := anArray at: top.
 top := top - 1.
 ^item

top

Stack Methods

push: item
 top := top + 1.
 anArray at: top put: item

pop
 | item |
 item := anArray at: top.
 top := top - 1.
 ^item

top

Stack Methods

push: item
 top := top + 1.
 anArray at: top put: item

pop
 | item |
 item := anArray at: top.
 top := top - 1.
 ^item

top

pop
 | item |
 item := anArray at: top.
 top := top - 1.
 ^item

What If The Array Is Full?

push: item
 top := top + 1.
 anArray at: top put: item

top

pop
 | item |
 item := anArray at: top.
 top := top - 1.
 ^item

What If The Array Is Full?

push: item
 top := top + 1.
 anArray at: top put: item

top

Adding Error Checking

push: item
 | save |
 top := top + 1.
 top > anArray size ifTrue:
 [save := anArray.
 anArray := Array new: 2 * save size.
 1 to: save size do:
 [:k | anArray at: k put: (save at: k)]].
 anArray at: top put: item

Blocks

! Blocks are Smalltalk objects that
contain unevaluated code.

! The unevaluated code in a block may
take arguments.

! Blocks can be passed around as
arguments to messages.

! Syntax for blocks:

[:arg1 :arg2 | <statement sequence>]

Example Blocks

[:item1 :item2 | item1 print .
 item2 print]

[:i | x := x + i]

[:x :y | x + y]

[‘hello world’]

Block Details

! Sending the value message to a block
causes the code to be evaluated.
! [‘hello world’] value

! [:x :y | x + y] value:1 value:3

! [:x :y :z|x+y+z] valueWithArguments:
#(1 5 6)

! If a block takes more than 4 arguments, we must
use the valueWithArguments form.

! Evaluated blocks return the result of their last
expression (unless they contain a return(^)—
see next slide).

Block Scoping

! Blocks are lexically-scoped:
! Variables bindings are determined by the scope

the block is created in, not the scope the block is
evaluated in.

! Returns (^) cause the method the block was
created in to return.

foo: aBlock
 | x y |
 y := 3.
 x := 5.
 aBlock value
 ^ x

bar
 | x y z|
 x := 10.
 y := 11.
 z := self foo:[x := y]
 ^ x

Block Scoping

! Blocks are lexically-scoped:
! Variables bindings are determined by the scope

the block is created in, not the scope the block is
evaluated in.

! Returns (^) cause the method the block was
created in to return.

foo: aBlock
 | x y |
 y := 3.
 x := 5.
 aBlock value
 ^ x

bar
 | x y z|
 x := 10.
 y := 11.
 z := self foo:[^5]
 ^ x

Control Structures

! Control structures in Smalltalk are
implemented as messages that take blocks
as arguments.

! Conditionals are implemented as messages
to instances of the True and False classes.

! While loops are implemented as messages to
blocks that evaluate to true or false.

! For loops are implemented as messages to
integer objects.

ifTrue and ifFalse messages

Example:

Methods for True class:

x = 0 ifTrue: [‘Can’t divide by 0’ print]
 ifFalse: [y := 1.5 / x]

ifTrue: block ifFalse: block
 ^ block value ^ nil

ifTrue: tBlock ifFalse: fBlock
 ^ tBlock value

Class Exercise

Class exercise - implement the corresponding methods
For the False class:

Class Exercise

Class exercise - implement the corresponding methods
For the False class:

ifTrue: block ifFalse: block
 ^ nil ^ block value

ifTrue: tBlock ifFalse: fBlock
 ^ fBlock value

whileTrue and whileFalse

Example:

The whileTrue method for Block class:

[x < 10] whileTrue: [x print. x := x+1]
[x < 0] whileFalse: [y := y+1. x := x-2]

whileTrue: bodyBlock
 self value
 ifTrue: [bodyBlock value.
 self whileTrue: bodyBlock].

whileTrue and whileFalse

Example:

[x < 10] whileTrue: [x print. x := x+1]
[x < 0] whileFalse: [y := y+1. x := x-2]

whileFalse: bodyBlock
 self value
 ifFalse: [bodyBlock value.
 self whileFalse: bodyBlock]

The whileFalse method is analogous:

For Loops

! For loops in Smalltalk use the to and do
messages.

! The to message creates a collection
containing all the integers between the
receiver and the argument.

! The do message iterates over a collection.
Each iteration uses the next element of the
collection as an argument to a value message
sent to the block. Example:

1 to: 10 do: [:i | i print]

Inheritance

! Subclasses inherit all variables and methods

from their superclass.

! So, we could create a 3D point class from the

2D point class as follows:

Point subclass: #Point3D
 instanceVariableNames: ‘z’
 classVariableNames: ‘originZ’
 poolDictionaries: ‘’
 category: ‘CSE 413-Point Examples’

Point3D Methods

! We can create new methods to read and set

the z-coordinate.

! We also want to override (i.e., replace) the

addition and scaleBy methods with methods

that operate on all three coordinates.

! However, the existing addition and scaleBy

methods already do part of the work—they

correctly compute the x and y coordinates.

How can we reuse this code?

The Answer: super!

! Sending a message to super invokes a

method in the superclass.

! We can use super to implement

scaleBy for the Point3D class:

scaleBy: factor
 super scaleBy: factor.
 z := z * factor

Invokes the 2D
Point scaleBy

Addition

! We could try the same thing for addition:

! But there’s a problem; super + invokes the
addition method of our 2D point class, which
returns a 2D point. When we try to set its z
coordinate, a runtime error occurs!

+ anotherPoint
 | result |
 result := super + anotherPoint.
 result setz: z + anotherPoint getz.
 ^ result

Fixing the problem

! To fix the problem, we need to change the

addition method for 2D points:

! Why does this work? Dynamic dispatch!

+ anotherPoint
 | result |
 result := Point new.
 result setx: x + anotherPoint getx.
 result sety: y + anotherPoint gety.
 ^ result

Fixing the problem

! To fix the problem, we need to change the

addition method for 2D points:

! Why does this work? Dynamic dispatch!

+ anotherPoint
 | result |
 result := self class new.
 result setx: x + anotherPoint getx.
 result sety: y + anotherPoint gety.
 ^ result

Dynamic Dispatch

! When we invoke a method on a receiver
object, the self variable is bound to that
object.

! Sending a message to self invokes methods
of self’s class—even if self is used in a
method inherited from a superclass.

! In our addition example:
! Calling the 2D addition will return a new 2D point if

it is invoked by a 2D point.

! If, however, a 3D point invokes the 2D addition as
part of the 3D addition, a 3D point will be
returned—because self will be a 3D point.

Dynamic Dispatch

! This is called dynamic dispatch

because the method to be invoked

(dispatched) is chosen at runtime based
on the class of self.

! Dynamic dispatch is a fundamental

element of object-oriented

programming. It make large-scale code

reuse by subclasses possible.

(Thanks to Craig Chambers)

Abstract vs. Concrete Classes

! The Point class provides an interface
(the messages or methods) and an
implementation.

! We can provide more flexibility by
splitting these:

! Abstract superclasses provide methods but
no instance variables.

! Concrete subclasses provide instance
variables and additional accessor methods.

(Thanks to Craig Chambers)

An Abstract Interface Class

Object subclass: #Point
 instanceVariableNames: ‘’ …

+ anotherPoint
 | result |
 result := self class new.
 result setx: self getx + anotherPoint getx.
 result sety: self gety + anotherPoint gety.
 ^ result

getx
setx: newX
 self subclassResponsibility

gety
sety: newY
 self …

(Thanks to Craig Chambers)

A Cartesian Implementation

Point subclass: #CartesianPoint
 instanceVariableNames: ‘x y’ …

getx
 ^ x

gety
 ^ y

setx: newX
 x := newX

sety: newY
 y := newY

(Thanks to Craig Chambers)

A Polar Implementation

Point subclass: #PolarPoint
 instanceVariableNames: ‘rho theta’ …

getrho
 ^ rho

gettheta
 ^ theta

setrho: newRho
 rho := newRho

settheta: newTheta
 theta := newTheta

We also need to provide the getx, setx, gety and

sety methods mentioned in the interface.

(Thanks to Craig Chambers)

A Polar Implementation

Point subclass: #PolarPoint
 instanceVariableNames: ‘rho theta’ …

getrho
 ^ rho

gettheta
 ^ theta

setrho: newRho
 rho := newRho

settheta: newTheta
 theta := newTheta

getx
 ^ rho * theta cos

gety
 ^ rho * theta sin

(Thanks to Craig Chambers)

Object-oriented Design

! Steps in building an object-oriented program:
! Identify the major data abstractions. These are

the objects.

! Identify the major operations on the data
abstractions. These are the interfaces.

! Identify commonalities among the abstractions,
and organize an inheritance hierarchy.

! Implement the design.

! Repeat (as necessary).

! Design for the long term—make sure it’s easy
to build on and add to your design.

Summary

! Smalltalk was the first pure object-oriented
language.

! Everything is an object, and every operation
is a message send to an object.

! Blocks are objects that contain unevaluated
code, and are used to implement control
structures.

! Smalltalk is useful to study because it
contains all the key features of modern OO
languages, without much of the complexity.

