i Why Learn Smalltalk?

= A pure object-oriented language
q Smalltalk = All values are objects

i = All operations are message sends (the
Smalltalk term for method calls)
CSE 413: Programming Languages = Historical context
Michael Ringenburg = One of the first object-oriented languages

= Java was originally designed to provide
“Smalltalk semantics in a C-like language”.

= Still used today

miker@cs.washington.edu

i Some History i Some History, continued ...

= 1964: Kristen Nygaard and Ole-Johan Dahl = 1972: Smalltalk rewritten from scratch
develop Simula—the first object-oriented in response to a bet that Kay could
language. define “the most powerful language in
= 1966: Alan Kay starts grad school at the the world” in “a page of code”.
University of Utah, and learns object-oriented)
programming from a pile of Simula code left = 1976: Smalltalk-76 developed.
on his desk. = 1980: Smalltalk-80 (modern Smalltalk)
= 1971: Alan Kay develops Smalltalk-71 as a released by Xerox.

programming language for the KiddiKomp.

Smalltalk: A Pure Object-
i Some History, continued ... i Oriented Language

= 1979-80: Apple bases Lisa user interface on = All values are objects:
Xerox’s SmallTalk Development environment. = 3, ‘hello world’, true, etc ...
Lisa eventually evolved into the Macintosh. = All operations (except assignment) are
= 1991: Bridge Systems develops a C-like message sends:
language with SmgIITaIk semantics for Sun. = 3 + 4,20 negated, efc ...
This later evolves into Java. = Even control structures are sends:
= 1996: Kay and colleagues release Squeak - =1 to: 5do: [:i | x := x+i],efc...

an open-source dialect of Smalltalk-80.

) . = Classes are objects too!
« Tryitout! Available at :

= Point new sends the new message to the
http://www.squeak.org/ Point class object

& Smalltalk Model of the World

" Drummer
Simpson
Manager Vocal
9 Tracks

& Smalltalk Model of the World

o
" Drummer
Simpson

A

Lip Sync

Manager Vocal
9 Tracks

& Smalltalk Model of the World

Ashlee Play “Autobiography”
Simpson » Drummer

Programmed/

by Microsoft

Manager Vocal
9 Tracks

& Smalltalk Model of the World

o
" Drummer
Simpson

Acid Reflux

A 4

Manager Vocal
9 Tracks

& Smalltalk Model of the World

Ashlee Play “Autobiography” ‘D
. » Drummer
Simpson
Vocal
Manager Tracks

& Smalltalk Model of the World

o D
n Drummer
Simpson

Play “Pieces of Me”

v
Manager Vocal
9 Tracks

$ Basic Smalltalk Syntax

Comment “Your comment”
String literal ‘hello world’
Character literal $a

Booleans true, false
Arrays #(2 3 5 10)
Assignment X =5

Return ~ resultValue
Statement Separater |stmt1l . stmt2

$ Unary Messages

= No arguments

= Syntax is:

receiverObject methodName

= Example:

= 20 negated

= myQueue front

= Point new
= Date today

$ Keyword Messages

= Take one or more arguments separated by

keywords.
= Syntax:

rcvr keywordl:

= Examples:

argl keyw2: arg2

= X at: 5 put: $a

= Array new:

= 4 printOn: Transcript base: 8

= Point3D x:

4 y:

5 z: 10 negated

$ Messages

= All non-assignment operations in Smalltalk
are message sends.
= Like method calls in Java.

= Messages are sent to a receiver object
= In Java, the receiver of x. foo(y, z) is x.

= Three types of messages: unary, infix binary,
and keyword.
= The main difference is how arguments are passed.

$ Infix Binary Messages

= Consist of one or two non-alphabetic
characters, like + or &&.

= Syntax is:
receiver <binOp> argument

= Examples:
«=3+4
s (x<y)&(3<=4)

$ Precedence of Messages

= Precedence of messages:
= First, send unary messages
= Then, infix binary messages.
= Finally, send keyword messages.
= Multiple messages of the same type are sent
in left to right order.
= 5 negated squared
= Only one keyword message is allowed per
statement, unless we use parenthesis.
= x foo: 5 bar: 6
= (x foo: 5) bar: 6.

Class Exercise:

= How do the following expressions evaluate?
=5+ 3 * 2
= Answer:
= 7 + 9 negated
= Answer:
= 6 multipliedBy: 7 + 3 negated
= Answer:
= (5 multBy: (4 multBy: 3)) negated
= Answer:

Class Exercise:

= How do the following expressions evaluate?
= 16
= Answer: 16
= 7 + 9 negated

= Answer:

= 6 multipliedBy: 7 + 3 negated

= Answer:

= (5 multBy: (4 multBy: 3)) negated
= Answer:

Class Exercise:

= How do the following expressions evaluate?
= 16
= Answer: 16
= =2
= Answer: -2
= 6 multipliedBy: 7 + 3 negated
= Answer:
= (5 multBy: (4 multBy: 3)) negated
= Answer:

Class Exercise:

= How do the following expressions evaluate?
= 8 * 2
= Answer:
= 7 + 9 negated
= Answer:
= 6 multipliedBy: 7 + 3 negated
= Answer:
= (5 multBy: (4 multBy: 3)) negated
= Answer:

Class Exercise:

= How do the following expressions evaluate?
= 16
= Answer: 16
=7 + (=9)
= Answer:
= 6 multipliedBy: 7 + 3 negated
= Answer:
= (5 multBy: (4 multBy: 3)) negated
= Answer:

Class Exercise:

= How do the following expressions evaluate?
= 16
= Answer: 16
= -2
= Answer: -2
= 6 multipliedBy: 7 + (-3)
= Answer:
= (5 multBy: (4 multBy: 3)) negated
= Answer:

$ Class Exercise: $ Class Exercise:

= How do the following expressions evaluate? = How do the following expressions evaluate?
= 16 = 16
= Answer: 16 = Answer: 16
= -2 = =2
= Answer: -2 = Answer: -2
= 6 multipliedBy: 4 = 24
= Answer: = Answer: 24
= (5 multBy: (4 multBy: 3)) negated = (5 multBy: (4 multBy: 3)) negated
= Answer: = Answer:

$ Class Exercise: $ Class Exercise:

= How do the following expressions evaluate? = How do the following expressions evaluate?
= 16 = 16
= Answer: 16 = Answer: 16
= -2 = -2
= Answer: -2 = Answer: -2
= 24 = 24
= Answer: 24 = Answer: 24
= (5 multBy: 12) negated = 60 negated
= Answer: = Answer:

Defining a class

$ Class Exercise:

= How do the following expressions evaluate? = In Smalltalk, every class has a superclass
= 16 (except the Object class).
= Answer: 16 = Recall, classes are objects—thus, we can
= -2 send them messages.
= Answer: -2 = To define a new class, we simply send a
=24 subclass keyword message to its superclass.
= Answer. 24 = All methods and variables of the superclass
" —60 are inherited by the new subclass.

Answer: -60

s The Subclass Message s Example - Point Class

= The subclass message takes the following

arguments:
= subclass: The name of the new class. Object subclass: #Point
= instancevVariableNames: Whitespace- instancevVariableNames: ‘x y’

separated string listing the fields of the new class.
= classVariableNames: List of variables that are
shared by all instances (objects) of the new class.

= poolDictionaries: List of dictionaries that this
class has access to.

= category: No semantic significance; helps the
programmer organize classes.

classVariableNames: ‘OriginX OriginY’
poolDictionaries: ‘'
category: ‘CSE 413-Point Examples’

& Defining Instance Methods & Example - Point Methods

= Once we have defined a class, we can define
header —> X

the messages types that an object of that A x

class can receive. body — Unary methods

= These are the “instance methods” of the class. y
= If an incorrect message type is sent to an Ty

object, a runtime error is generated.
= Instance methods are entered by selecting x: newx

the class, and clicking “Instance’. X = newX Kevword methods
= Method declarations consist of three parts: y: newy Y

the header line, the local variables y := newy

declarations, and the method body.

& Example - Point Methods & Example - Point Methods

An infix binary method: Shift the point:
+ anotherPoini/////,//’/localvanames xShift: xs yShift: ys
| result | X 1= X + XS.
result := Point new. y 1=y + ys

result x: x + anotherPoint x.
result y: y + anotherPoint y.
~ result

$ Class Exercise: scaleBy

Define a scaleBy method that multiplies
all coordinates by a fixed factor.

$ Class Exercise: scaleBy

Define a scaleBy method that multiplies
all coordinates by a fixed factor.
Answer that modifies the receiver:

scaleBy: factor
x := x * factor.
y :=y * factor

$ Example - Point Constructor

x: xCoord y: yCoord

p |
:= self new.

x: xCoord.
y: yCoord.
p

>3 ' ' —

= I'll explain why you should use self new
rather than just new when we discuss dynamic

dispatch.

$ Class Exercise: scaleBy

Define a scaleBy method that multiplies
all coordinates by a fixed factor.
Answer that returns a new point:

scaleBy: factor
| result |
result := Point new.
result x: x * factor.
result y: y * factor.
~ result

Defining Class Methods

= Recall that classes are objects too.
= Thus, we can also define the message types
that a class object can receive.
= These are the class methods.
= Common uses:

= Constructors
= Methods that have nothing to do with a specific
instance (object) of the class.

= To enter a class method, select the class and
click on “Class”.

Example:Changing the Origin

originX: newX y: newY
OriginX newX.
OriginY := newY

i Access Protection i Next Time

= All messages/methods are public - = How control structures are implemented
anyone can send them. in Smalltalk.

= All variables are private - only methods = Hint: everything in Smalltalk is a message
of the class may access them. send!

= In fact, an object’s variables are only = Self, Super, Inheritance and Dynamic
added to the environment when a Dispatch.

message to the object is evaluated. = A case study in object oriented design.

