
Smalltalk

CSE 413: Programming Languages

Michael Ringenburg

miker@cs.washington.edu

Why Learn Smalltalk?

! A pure object-oriented language

! All values are objects

! All operations are message sends (the
Smalltalk term for method calls)

! Historical context

! One of the first object-oriented languages

! Java was originally designed to provide
“Smalltalk semantics in a C-like language”.

! Still used today

Some History

! 1964: Kristen Nygaard and Ole-Johan Dahl

develop Simula—the first object-oriented

language.

! 1966: Alan Kay starts grad school at the

University of Utah, and learns object-oriented

programming from a pile of Simula code left

on his desk.

! 1971: Alan Kay develops Smalltalk-71 as a

programming language for the KiddiKomp.

Some History, continued …

! 1972: Smalltalk rewritten from scratch

in response to a bet that Kay could

define “the most powerful language in

the world” in “a page of code”.

! 1976: Smalltalk-76 developed.

! 1980: Smalltalk-80 (modern Smalltalk)

released by Xerox.

Some History, continued …

! 1979-80: Apple bases Lisa user interface on
Xerox’s SmallTalk Development environment.
Lisa eventually evolved into the Macintosh.

! 1991: Bridge Systems develops a C-like
language with SmallTalk semantics for Sun.
This later evolves into Java.

! 1996: Kay and colleagues release Squeak -
an open-source dialect of Smalltalk-80.
! Try it out! Available at :

http://www.squeak.org/

Smalltalk: A Pure Object-

Oriented Language

! All values are objects:
! 3, ‘hello world’, true, etc …

! All operations (except assignment) are
message sends:
! 3 + 4, 20 negated, etc …

! Even control structures are sends:
! 1 to: 5 do: [:i | x := x+i], etc …

! Classes are objects too!
! Point new sends the new message to the
Point class object

Smalltalk Model of the World

Ashlee

Simpson

Manager

Drummer

Vocal

Tracks

Smalltalk Model of the World

Ashlee

Simpson

Manager

Drummer

Vocal

Tracks

Acid Reflux

Smalltalk Model of the World

Ashlee

Simpson

Manager

Drummer

Vocal

Tracks

Lip Sync

Smalltalk Model of the World

Ashlee

Simpson

Manager

Drummer

Vocal

Tracks

Play “Autobiography”

Smalltalk Model of the World

Ashlee

Simpson

Manager

Drummer

Vocal

Tracks

Play “Autobiography”

Programmed

by Microsoft

Smalltalk Model of the World

Ashlee

Simpson

Manager

Drummer

Vocal

Tracks

Play “Pieces of Me”

Basic Smalltalk Syntax

stmt1 . stmt2Statement Separater

^ resultValueReturn

x := 5Assignment

#(2 3 5 10)Arrays

true, falseBooleans

$aCharacter literal

‘hello world’String literal

“Your comment”Comment

Messages

! All non-assignment operations in Smalltalk

are message sends.

! Like method calls in Java.

! Messages are sent to a receiver object

! In Java, the receiver of x.foo(y,z) is x.

! Three types of messages: unary, infix binary,

and keyword.

! The main difference is how arguments are passed.

Unary Messages

! No arguments

! Syntax is:

 receiverObject methodName

! Example:
! 20 negated

! myQueue front

! Point new

! Date today

Infix Binary Messages

! Consist of one or two non-alphabetic
characters, like + or &&.

! Syntax is:

 receiver <binOp> argument

! Examples:

! 3 + 4

! (x < y) & (3 <= 4)

Keyword Messages

! Take one or more arguments separated by
keywords.

! Syntax:

 rcvr keyword1: arg1 keyw2: arg2

! Examples:
! x at: 5 put: $a

! Array new: 10

! 4 printOn: Transcript base: 8

! Point3D x: 4 y: 5 z: 10 negated

Precedence of Messages

! Precedence of messages:
! First, send unary messages

! Then, infix binary messages.

! Finally, send keyword messages.

! Multiple messages of the same type are sent
in left to right order.
! 5 negated squared

! Only one keyword message is allowed per
statement, unless we use parenthesis.
! x foo: 5 bar: 6

! (x foo: 5) bar: 6.

Class Exercise:

! How do the following expressions evaluate?

! 5 + 3 * 2

! Answer:

! 7 + 9 negated

! Answer:

! 6 multipliedBy: 7 + 3 negated

! Answer:

! (5 multBy: (4 multBy: 3)) negated

! Answer:

Class Exercise:

! How do the following expressions evaluate?

! 8 * 2

! Answer:

! 7 + 9 negated

! Answer:

! 6 multipliedBy: 7 + 3 negated

! Answer:

! (5 multBy: (4 multBy: 3)) negated

! Answer:

Class Exercise:

! How do the following expressions evaluate?

! 16

! Answer: 16

! 7 + 9 negated

! Answer:

! 6 multipliedBy: 7 + 3 negated

! Answer:

! (5 multBy: (4 multBy: 3)) negated

! Answer:

Class Exercise:

! How do the following expressions evaluate?

! 16

! Answer: 16

! 7 + (-9)

! Answer:

! 6 multipliedBy: 7 + 3 negated

! Answer:

! (5 multBy: (4 multBy: 3)) negated

! Answer:

Class Exercise:

! How do the following expressions evaluate?

! 16

! Answer: 16

! -2

! Answer: -2

! 6 multipliedBy: 7 + 3 negated

! Answer:

! (5 multBy: (4 multBy: 3)) negated

! Answer:

Class Exercise:

! How do the following expressions evaluate?

! 16

! Answer: 16

! -2

! Answer: -2

! 6 multipliedBy: 7 + (-3)

! Answer:

! (5 multBy: (4 multBy: 3)) negated

! Answer:

Class Exercise:

! How do the following expressions evaluate?

! 16

! Answer: 16

! -2

! Answer: -2

! 6 multipliedBy: 4

! Answer:

! (5 multBy: (4 multBy: 3)) negated

! Answer:

Class Exercise:

! How do the following expressions evaluate?

! 16

! Answer: 16

! -2

! Answer: -2

! 24

! Answer: 24

! (5 multBy: (4 multBy: 3)) negated

! Answer:

Class Exercise:

! How do the following expressions evaluate?

! 16

! Answer: 16

! -2

! Answer: -2

! 24

! Answer: 24

! (5 multBy: 12) negated

! Answer:

Class Exercise:

! How do the following expressions evaluate?

! 16

! Answer: 16

! -2

! Answer: -2

! 24

! Answer: 24

! 60 negated

! Answer:

Class Exercise:

! How do the following expressions evaluate?

! 16

! Answer: 16

! -2

! Answer: -2

! 24

! Answer: 24

! -60

! Answer: -60

Defining a class

! In Smalltalk, every class has a superclass

(except the Object class).

! Recall, classes are objects—thus, we can

send them messages.

! To define a new class, we simply send a

subclass keyword message to its superclass.

! All methods and variables of the superclass

are inherited by the new subclass.

The Subclass Message

! The subclass message takes the following
arguments:
! subclass: The name of the new class.

! instanceVariableNames: Whitespace-
separated string listing the fields of the new class.

! classVariableNames: List of variables that are
shared by all instances (objects) of the new class.

! poolDictionaries: List of dictionaries that this
class has access to.

! category: No semantic significance; helps the
programmer organize classes.

Example - Point Class

Object subclass: #Point
 instanceVariableNames: ‘x y’
 classVariableNames: ‘OriginX OriginY’
 poolDictionaries: ‘’
 category: ‘CSE 413-Point Examples’

Defining Instance Methods

! Once we have defined a class, we can define
the messages types that an object of that
class can receive.
! These are the “instance methods” of the class.

! If an incorrect message type is sent to an
object, a runtime error is generated.

! Instance methods are entered by selecting
the class, and clicking “Instance”.

! Method declarations consist of three parts:
the header line, the local variables
declarations, and the method body.

Example - Point Methods

x
 ^ x

y
 ^ y

x: newX
 x := newX

y: newY
 y := newY

Unary methods

Keyword methods

header

body

Example - Point Methods

+ anotherPoint
 | result |
 result := Point new.
 result x: x + anotherPoint x.
 result y: y + anotherPoint y.
 ^ result

An infix binary method:
local variables

Example - Point Methods

xShift: xs yShift: ys
 x := x + xs.
 y := y + ys

Shift the point:

Class Exercise: scaleBy

Define a scaleBy method that multiplies

all coordinates by a fixed factor.

Class Exercise: scaleBy

Define a scaleBy method that multiplies

all coordinates by a fixed factor.

Answer that returns a new point:

scaleBy: factor
 | result |
 result := Point new.
 result x: x * factor.
 result y: y * factor.
 ^ result

Class Exercise: scaleBy

Define a scaleBy method that multiplies

all coordinates by a fixed factor.

Answer that modifies the receiver:

scaleBy: factor
 x := x * factor.
 y := y * factor

Defining Class Methods

! Recall that classes are objects too.

! Thus, we can also define the message types
that a class object can receive.
! These are the class methods.

! Common uses:
! Constructors

! Methods that have nothing to do with a specific
instance (object) of the class.

! To enter a class method, select the class and
click on “Class”.

Example - Point Constructor

! I’ll explain why you should use self new
rather than just new when we discuss dynamic

dispatch.

x: xCoord y: yCoord
 | p |
 p := self new.
 p x: xCoord.
 p y: yCoord.
 ^ p

Example:Changing the Origin

originX: newX y: newY
 OriginX := newX.
 OriginY := newY

Access Protection

! All messages/methods are public -

anyone can send them.

! All variables are private - only methods

of the class may access them.

! In fact, an object’s variables are only

added to the environment when a

message to the object is evaluated.

Next Time

! How control structures are implemented

in Smalltalk.

! Hint: everything in Smalltalk is a message

send!

! Self, Super, Inheritance and Dynamic

Dispatch.

! A case study in object oriented design.

