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Why Learn Smalltalk?

! A pure object-oriented language

! All values are objects

! All operations are message sends (the
Smalltalk term for method calls)

! Historical context

! One of the first object-oriented languages

! Java was originally designed to provide
“Smalltalk semantics in a C-like language”.

! Still used today

Some History

! 1964: Kristen Nygaard and Ole-Johan Dahl

develop Simula—the first object-oriented

language.

! 1966: Alan Kay starts grad school at the

University of Utah, and learns object-oriented

programming from a pile of Simula code left

on his desk.

! 1971: Alan Kay develops Smalltalk-71 as a

programming language for the KiddiKomp.

Some History, continued …

! 1972:  Smalltalk rewritten from scratch

in response to a bet that Kay could

define “the most powerful language in

the world” in “a page of code”.

! 1976: Smalltalk-76 developed.

! 1980: Smalltalk-80 (modern Smalltalk)

released by Xerox.

Some History, continued …

! 1979-80: Apple bases Lisa user interface on
Xerox’s SmallTalk Development environment.
Lisa eventually evolved into the Macintosh.

! 1991: Bridge Systems develops a C-like
language with SmallTalk semantics for Sun.
This later evolves into Java.

! 1996: Kay and colleagues release Squeak -
an open-source dialect of Smalltalk-80.
! Try it out!  Available at :

http://www.squeak.org/

Smalltalk: A Pure Object-

Oriented Language

! All values are objects:
! 3, ‘hello world’, true, etc …

! All operations (except assignment) are
message sends:
! 3 + 4, 20 negated, etc …

! Even control structures are sends:
! 1 to: 5 do: [ :i | x := x+i ], etc …

! Classes are objects too!
! Point new sends the new message to the
Point class object
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Basic Smalltalk Syntax

stmt1 . stmt2Statement Separater

^ resultValueReturn

x := 5Assignment

#(2  3  5  10)Arrays

true, falseBooleans

$aCharacter literal

‘hello world’String literal

“Your comment”Comment

Messages

! All non-assignment operations in Smalltalk

are message sends.

! Like method calls in Java.

! Messages are sent to a receiver object

! In Java, the receiver of x.foo(y,z) is x.

! Three types of messages: unary, infix binary,

and keyword.

! The main difference is how arguments are passed.

Unary Messages

! No arguments

! Syntax is:

   receiverObject methodName

! Example:
! 20 negated

! myQueue front

! Point new

! Date today

Infix Binary Messages

! Consist of one or two non-alphabetic
characters, like + or &&.

! Syntax is:

   receiver <binOp> argument

! Examples:

! 3 + 4

! (x < y) & (3 <= 4)

Keyword Messages

! Take one or more arguments separated by
keywords.

! Syntax:

  rcvr keyword1: arg1 keyw2: arg2

! Examples:
! x at: 5 put: $a

! Array new: 10

! 4 printOn: Transcript base: 8

! Point3D x: 4 y: 5 z: 10 negated

Precedence of Messages

! Precedence of messages:
! First, send unary messages

! Then, infix binary messages.

! Finally, send keyword messages.

! Multiple messages of the same type are sent
in left to right order.
! 5 negated squared

! Only one keyword message is allowed per
statement, unless we use parenthesis.
! x foo: 5 bar: 6

! (x foo: 5) bar: 6.



Class Exercise:

! How do the following expressions evaluate?

! 5 + 3 * 2

! Answer:

! 7 + 9 negated

! Answer:

! 6 multipliedBy: 7 + 3 negated

! Answer:

! (5 multBy: (4 multBy: 3)) negated

! Answer:

Class Exercise:

! How do the following expressions evaluate?

! 8 * 2

! Answer:

! 7 + 9 negated

! Answer:

! 6 multipliedBy: 7 + 3 negated

! Answer:

! (5 multBy: (4 multBy: 3)) negated

! Answer:

Class Exercise:

! How do the following expressions evaluate?

! 16

! Answer: 16

! 7 + 9 negated

! Answer:

! 6 multipliedBy: 7 + 3 negated

! Answer:

! (5 multBy: (4 multBy: 3)) negated

! Answer:

Class Exercise:

! How do the following expressions evaluate?

! 16

! Answer: 16

! 7 + (-9)

! Answer:

! 6 multipliedBy: 7 + 3 negated

! Answer:

! (5 multBy: (4 multBy: 3)) negated

! Answer:

Class Exercise:

! How do the following expressions evaluate?

! 16

! Answer: 16

! -2

! Answer: -2

! 6 multipliedBy: 7 + 3 negated

! Answer:

! (5 multBy: (4 multBy: 3)) negated

! Answer:

Class Exercise:

! How do the following expressions evaluate?

! 16

! Answer: 16

! -2

! Answer: -2

! 6 multipliedBy: 7 + (-3)

! Answer:

! (5 multBy: (4 multBy: 3)) negated

! Answer:



Class Exercise:

! How do the following expressions evaluate?

! 16

! Answer: 16

! -2

! Answer: -2

! 6 multipliedBy: 4

! Answer:

! (5 multBy: (4 multBy: 3)) negated

! Answer:

Class Exercise:

! How do the following expressions evaluate?

! 16

! Answer: 16

! -2

! Answer: -2

! 24

! Answer: 24

! (5 multBy: (4 multBy: 3)) negated

! Answer:

Class Exercise:

! How do the following expressions evaluate?

! 16

! Answer: 16

! -2

! Answer: -2

! 24

! Answer: 24

! (5 multBy: 12) negated

! Answer:

Class Exercise:

! How do the following expressions evaluate?

! 16

! Answer: 16

! -2

! Answer: -2

! 24

! Answer: 24

! 60 negated

! Answer:

Class Exercise:

! How do the following expressions evaluate?

! 16

! Answer: 16

! -2

! Answer: -2

! 24

! Answer: 24

! -60

! Answer: -60

Defining a class

! In Smalltalk, every class has a superclass

(except the Object class).

! Recall, classes are objects—thus, we can

send them messages.

! To define a new class, we simply send a

subclass keyword message to its superclass.

! All methods and variables of the superclass

are inherited by the new subclass.



The Subclass Message

! The subclass message takes the following
arguments:
! subclass: The name of the new class.

! instanceVariableNames: Whitespace-
separated string listing the fields of the new class.

! classVariableNames: List of variables that are
shared by all instances (objects) of the new class.

! poolDictionaries: List of dictionaries that this
class has access to.

! category: No semantic significance; helps the
programmer organize classes.

Example - Point Class

Object subclass: #Point
  instanceVariableNames: ‘x y’
  classVariableNames: ‘OriginX OriginY’
  poolDictionaries: ‘’
  category: ‘CSE 413-Point Examples’

Defining Instance Methods

! Once we have defined a class, we can define
the messages types that an object of that
class can receive.
! These are the “instance methods” of the class.

! If an incorrect message type is sent to an
object, a runtime error is generated.

! Instance methods are entered by selecting
the class, and clicking “Instance”.

! Method declarations consist of three parts:
the header line, the local variables
declarations, and the method body.

Example - Point Methods

x
  ^ x

y
  ^ y

x: newX
  x := newX

y: newY
  y := newY

Unary methods

Keyword methods

header

body

Example - Point Methods

+ anotherPoint
  | result |
  result := Point new.
  result x: x + anotherPoint x.
  result y: y + anotherPoint y.
  ^ result

An infix binary method:
local variables

Example - Point Methods

xShift: xs yShift: ys
  x := x + xs.
  y := y + ys

Shift the point:



Class Exercise: scaleBy

Define a scaleBy method that multiplies

all coordinates by a fixed factor.

Class Exercise: scaleBy

Define a scaleBy method that multiplies

all coordinates by a fixed factor.

Answer that returns a new point:

scaleBy: factor
  | result |
  result := Point new.
  result x: x * factor.
  result y: y * factor.
  ^ result 

Class Exercise: scaleBy

Define a scaleBy method that multiplies

all coordinates by a fixed factor.

Answer that modifies the receiver:

scaleBy: factor
  x := x * factor.
  y := y * factor

Defining Class Methods

! Recall that classes are objects too.

! Thus, we can also define the message types
that a class object can receive.
! These are the class methods.

! Common uses:
! Constructors

! Methods that have nothing to do with a specific
instance (object) of the class.

! To enter a class method, select the class and
click on “Class”.

Example - Point Constructor

! I’ll explain why you should use self new
rather than just new when we discuss dynamic

dispatch.

x: xCoord y: yCoord
  | p |
  p := self new.
  p x: xCoord.
  p y: yCoord.
  ^ p

Example:Changing the Origin

originX: newX y: newY
  OriginX := newX.
  OriginY := newY



Access Protection

! All messages/methods are public -

anyone can send them.

! All variables are private - only methods

of the class may access them.

! In fact, an object’s variables are only

added to the environment when a

message to the object is evaluated.

Next Time

! How control structures are implemented

in Smalltalk.

! Hint: everything in Smalltalk is a message

send!

! Self, Super, Inheritance and Dynamic

Dispatch.

! A case study in object oriented design.


