
1

1

Topic #16:
Logic Programming

CSE 413, Autumn 2004

Programming Languages

http://www.cs.washington.edu/education/courses/413/04au/

2

References

• Slides from CSE 341 – S. Tanimoto

• See Chapter 16 of the text
– Read 16.1, 16.4, 16.5, 16.6 (skip 16.6.7)

– Skim 16.7, 16.8

3

Motivation
1. Reduce the programming burden.

2. System should simply accept the necessary
information and the objective (goal), and then figure
out its own solution.

3. Have a program that looks more like its own
specification.

4. Take advantage of logical inference to
automatically get many of the consequences of the
given information.

4

What is a program?

•Whatever it is, it must be __________
e.g., interpretable by some identified
“computer language processor.”

5

Q: Is a logical description of a
problem actually a program?

6

Prolog Program Structure
A Prolog program consists of an ordered collection
of logical statements. These usually represent:

• background information

•specific information for a given problem

•a hypothesis or a statement containing a free
variable.

2

7

Sample Problem
For someone (call him or her X) to be the grandmother of
someone else (call him or her Y), X must be the mother of
someone (call him or her Z) who is a parent of Y.

Someone is a parent of another person, if that someone is
either the mother or the father of the other person.

Mary is the mother of Stan.
Gwen is the mother of Alice.
Valery is the mother of Gwen.
Stan is the father of Alice.

The question: Who is a grandmother of Alice?

8

Sample Prolog Program:
grandmother.pl

grandmother(X, Y) :- mother(X, Z), parent(Z, Y).
parent(X, Y) :- mother(X, Y).
parent(X, Y) :- father(X, Y).

mother(mary, stan).
mother(gwen, alice).
mother(valery, gwen).
father(stan, alice).

grandmother(X, alice).

9

Sample Session
Welcome to SWI-Prolog (Version 3.3.2)
Copyright (c) 1990-2000 University of Amsterdam. All
rights reserved.

For help, use ?- help(Topic). or ?- apropos(Word).

?- [grandmother].
% grandmother compiled 0.00 sec, 1,312 bytes

Yes
?- grandmother(X, alice).

X = mary ;

X = valery ;

No
?-

10

How does this work?

Propositional Logic

Clauses

Resolution

Predicate Logic

Unification

11

Propositional Logic
“If the butler had a motive and the butler was alone
with the victim then the butler is guilty.”

Define our atomic formulas:

P: The butler had a motive.
Q: The butler was alone.
R: The butler is guilty.

Express the compound formula:

(P & Q) -> R a typeable version of (P ∧ Q) → R

12

Clause Form
Any boolean formula can be put into conjunctive normal form
(CNF). From there, it’s easy to get “clause form.” Automatic
inference using resolution requires statements be in clause form.

If not Y then X and not Z.
Y or (X & not Z)
(Y or X) & (Y or not Z)
(X V Y) & (Y V ~Z)

clauses: (X V Y), (Y V ~Z)
X, Y, and ~Z are called literals. (A literal is a variable or a negated variable.)

Each clause is a disjunction of literals.
A formula in CNF is a conjunction of clauses.

For our example with the butler, we get the following clause:
~ P V ~ Q V R

3

13

Resolution
Resolution is a way to make a new clause from two existing clauses. If the two
original clauses were true, then the new one is, too.

The two existing clauses must be compatible, in order to use resolution. There
must exist some literal in one clause that occurs negated in the other clause.

Example: Clause 1: A V ~ B V C
Clause 2: B V D

The resolvent is formed by disjoining (i.e., combining with "V" all the literals of
clause 1 and clause 2 except the ones involving B.

This results in:

14

Example of Resolution
“If the butler had a motive and the butler was alone with the victim then
the butler is guilty. If the butler needed money, then the butler had a
motive. The butler needed money. The butler was alone with the victim.”

Prove that the butler was guilty.

Premises: c1: ~ P V ~ Q V R
c2: ~ S V P If the butler needed money, then the butler had a motive.

c3: S The butler needed money.

c4: Q The butler was alone with the victim.

Assume to the contrary that the butler was not guilty: c5: ~ R

Show a contradiction by resolving to obtain the null clause [].
c1 and c4 resolve to give c6:
c6 and c2 resolve to give c7:
c7 and c5 resolve to give c8:
c8 and c3 resolve to give c6:

15

Going from Propositional Logic
to Predicate Logic

Propositional logic is too limited in its expressive
power to help us do real-world programming.

We need to extend it to a system that uses
domain variables, functions, and constants.

We will still be able to use resolution to perform
inference mechanically.

16

Predicate Logic
“Every Macintosh computer uses electricity.”

(all x) (Macintosh(x) implies UsesElectricity(x))

variables: x, y, z, etc.
constants: a, b, c, etc.
function symbols: f, g, etc.
Predicate symbols: P, Q,

Macintosh, UsesElectricity
quantifiers: all, exists

Logical connectives: not, implies, and, or.
~, ->, &, V.

17

Clause Form
(all x) (Macintosh(x) -> UsesElectricity(x)

UsesElectricity(x) V Not Macintosh(x).

Clause form for predicate calculus expressions is similar to that
for propositional calculus expressions.

To achieve clause form, several steps may be required.
a. Rewrite X -> Y expressions as ~ X V Y.
b. Reduce scopes of negation.
c. Using strict rules, eliminate quantifiers.

Universal: drop the quantifier (implicit)
Existential: use “skolem constants”

d. Convert to conjunctive normal form

18

How to extend resolution
to clauses with variables?

Literals are matched using a method called unification.

Unification involves substituting “terms” for variables.

4

19

Unification of Literals

A substitution is a set of term/variable pairs.
{ f(a)/x, b/y, z/w }

A unifier for a pair of literals is a substitution that
when applied to both literals, makes them
identical.

P(x, a), P(f(a), y) have the unifier
{ f(a)/x, a/y }

P(x), P(y) have the unifier { a/x, a/y },
but they also have the unifier { x/y }.

20

Unification Example

mother(jill).

father(bob).

man(X) :- father(X).

Goal:
man(X).

Unifier?

21

Issues for Prolog Solvers
• Solving direction

– Forward chaining:

– Backward chaining:

• Solving multiple clause goals:
– Depth-first:

– Breadth first:

• Backtracking
22

Backtracking Example
male(bob).

male(john).

male(fred).

…

parent(fred, shelley).

Goal:
male(X), parent(X, shelley).

23

‘Rithmetic
speed(ford, 100).
speed(chevy, 105).
speed(dodge, 95).
speed(volvo, 80).
time(ford, 20).
time(chevy, 21).
time(dodge, 24).
time(volvo, 24).
distance(X, Y), :- speed(X, Speed),

time (X, Time),
Y is Speed * Time.

Goal:
distance(chevy, Chevy_Distance).

24

Inside solving: trace

trace.
distance(chevy, Chevy_Distance).

Call: distance(chevy, _0)?
Call: speed(chevy, _5)?
Exit: speed(chevy, 105)
Call: time(chevy, _6)?
Exit: time(chevy, 21)
Call: _0 is 105*21?
Exit: 2205 is 105*21
Exit: distance(chevy, 2205)

Chevy_Distance = 2205

5

25

trace with backtracking

likes(jake, chocolate).
likes(jake, apricots).
likes(darcie, licorice).
likes(darcie, apricots).

trace.
likes(jake, X), likes(darcie, X).

Call: likes(jake, _0)?
Exit: likes(jake, chocolate)
Call: likes(darcie, chocolate)
Fail: likes(darcie, chocolate)
Redo: likes(jake, _0)?
Exit: likes(jake, apricots)
Call: likes(darcie, apricots)
Exit: likes(darcie, apricots)

X = apricots

26

Problems with Prolog
1. Resolution Order control

In theory, programmer shouldn’t care.
In practice, greatly affects efficiency

2. Problems with handing negation

3. Converting spec to execution
sort(old, new) :- permute(old,new), sorted(new).

sorted ([]).
sorted ([x]).
sorted([x,y | list]) :- x <= y, sorted([y | list]).

27

Applications of Logic Programming

1. Databases
Express facts and queries with one language
Deduction capability built in

2. AI
• Expert systems – need facts, heuristics, inferencing

engine
Legal, medical, financial helpers

• Natural language processing
Parse sentences described by CFG

Prolog allows very concise specification of these apps

3. Other uses of “declarativism?”

28

An Example: E-Agents

Based on McDowell, Etzioni, and Halevy. “The Specification of Agent Behavior
by Ordinary People: A Case Study.” ISWC 2004, November, 2004.

[roll animation here]

29

Overview of E-Agents

• General pattern of an E-Agent
– Ask people some set of questions

– Collect their responses

– Ensure that results satisfy some constraints

• Questions have logical interpretation
– Enables automated responses, re-use of data

30

E-Agent Lifecycle

Author Originator Manager

Participants

Authoring Instantiation Execution

6

31

E-Agent Template Authoring

• Components
– Questions to ask

– Constraints to enforce

– Notifications to send

32

Template Part 1: Questions

Ask the participants what dish they will bring:

[a :StringQuestion;
:name "Bring";

:enumeration "$Choices$";]

(Maybe) Ask how many guests they will bring:

[a :IntegerQuestion;
:guard "$AskForNumGuests$";

:name "NumGuests";
:minInclusive "0";]

33

Template Part 2: Constraints

Ensure that responses are pair-wise balanced:

[a :MustConstraint

:forAll ([:name "x";
:range "$Choices$”]

[:name "y";
:range "$Choices$}"]);

:enforce "abs($Bring.x.count()$ -

$Bring.y.count()$)
<= $MaxImbalance$";] 34

Template Part 3: Notifications

Notify the originator when the total number of guests hits
a threshold value:

[a :OnConditionSatisfied;

:guard "$GuestThreshold$ > 0";
:condition "$NumGuests.sum()$ >=

$GuestThreshold$";
:notify :Originator;

:message
"Currently, $NumGuests.sum()$

guests are expected.";]

35

Results: Declarative vs. Procedural
Specification

81%98503Auction

90%1091058Approval

89%82743Meeting

82%99536FCFS

90%1701680Potluck

SavingsDecl. SizeProc. sizeName

36

E-Agent Lifecycle

Author Originator Manager

Participants

Authoring Instantiation Execution

7

37

E-Agent Instantiation

• Tool generates HTML form from details in
template
– Parameters needed plus restrictions

• Originator enters parameters, e.g.,
– Participants (who to ask?)

– Choices (what options to offer?)

– AskForNumGuests (should we ask about guests?)

– GuestThreshold (when to notify the originator?)

38

Web form for Instantiation

39

Instantiation Safety

• Possible instantiation:
– AskForNumGuests = False
– GuestThreshold = 50

– …

• Problem:
– NumGuests question not defined �

ERROR: notification references undefined symbol
– Very confusing for originator

• Solutions?
– Manual checking, or
– Automated instantiation safety testing 40

Instantiation Safety - Results

• Template is instantiation-safe if every possible
instantiation results in a legal declaration (well-
formed, symbols defined)

• Result: testing instantiation safety is
co-NP-complete in the # of parameters
– Need to consider all possible combinations

• Result: polynomial time in common cases:
– Restrict guards, quantifications to use only small

number of parameters
– Ensure that parts of template can be can be checked

independently

41

Logic Programming Summary

• Programs specify desired outcomes, not
how to get there
– May be inefficient
– But enables concise specification
– Very useful for certain domains

• Prolog most widely used
– Adds support for I/O, lists, arithmetic
– Enables some control over efficiency

