Classes of Languages

1. Regular languages (finite automata)
2. Context-free languages (push-down automata)
3. Context-sensitive languages (linear bounded automata)
4. Recursively-enumerable languages (Turing machine)

Grammar for Java, a big language

• The Java™ Language Specification, 2nd Edition
 » Entire document
 • 500+ pages
 » Grammar productions with explanatory text
 » Chapter 18, Syntax
 • 8 pages of grammar productions, presented in "BNF-style"

Parsing

• The syntax of most programming languages can be specified by a context-free grammar (CFG)

• Parsing
 » Given a grammar G and a sentence w in $L(G)$, traverse the derivation (parse tree) for w in some standard order and do something useful at each node
 » The tree might not be produced explicitly, but the control flow of a parser corresponds to a traversal

Parse Tree Example

```
G
```

```
program
    | statement
    | program statement
assignStmt
    | expr
    | id = expr
ifStmt
    | if ( expr ) stmt
expr
    | id
    | int
    | expr + expr
id
    | a | b | c | i | j | k | n | x | y | z
int
    | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
```

```
program
    | assignStmt
    | statement
    | program statement
assignStmt
    | expr
    | id = expr
ifStmt
    | if ( expr ) stmt
expr
    | id
    | int
    | expr + expr
id
    | a | b | c | i | j | k | n | x | y | z
int
    | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
```

```
w → a = 1 ; if ( a + 1 ) b = 2 ;
```
“Standard Order”

- For practical reasons we want the parser to be deterministic (no backtracking), and we want to examine the source program from left to right.

“Something Useful”

- At each point (node) in the traversal, perform some semantic action
 - Construct nodes of full parse tree
 - Construct abstract syntax tree
 - Construct linear, lower-level representation
 - Generate target code on the fly → 1-pass compiler

Common Orderings

- Top-down
 - Start with the root
 - Traverse the parse tree depth-first, left-to-right (leftmost derivation)
 - LL(k)
- Bottom-up
 - Start at leaves and build up to the root
 - Effectively a rightmost derivation in reverse
 - LR(k)

Context-Free Grammars

- Formally, a grammar G is a tuple $<N, \Sigma, P, S>$ where
 - N a finite set of non-terminal symbols
 - Σ a finite set of terminal symbols
 - P a finite set of productions
 - A subset of $N \times (N \cup \Sigma)^*$
 - S the start symbol, a distinguished element of N

Standard Notations

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a, b, c</td>
<td>elements of Σ</td>
</tr>
<tr>
<td>w, x, y, z</td>
<td>elements of Σ^*</td>
</tr>
<tr>
<td>A, B, C</td>
<td>elements of N</td>
</tr>
<tr>
<td>X, Y, Z</td>
<td>elements of $N \cup \Sigma$</td>
</tr>
<tr>
<td>α, β, γ</td>
<td>elements of $(N \cup \Sigma)^*$</td>
</tr>
<tr>
<td>$A \rightarrow \alpha$ (or $A ::= \alpha$) if $<A, \alpha>$ in P</td>
<td></td>
</tr>
</tbody>
</table>

Derivation Relations

- $\alpha A \gamma \Rightarrow \alpha \beta \gamma$ iff $A \rightarrow \beta$ in P
- $A \Rightarrow^* w$ if there is a chain of productions starting with A that generates w
 - "Non-terminal A derives the string of terminals $w"
Derivation Relations

- \(w \ A \gamma \Rightarrow_{lm} w \beta \gamma \) iff \(A \rightarrow \beta \) in \(P \)
 - derive by always picking the first non-terminal from the left
- \(\alpha A w \Rightarrow_{rm} \alpha \beta w \) iff \(A \rightarrow \beta \) in \(P \)
 - derive by always picking the first non-terminal from the right
- We will only be interested in leftmost and rightmost derivations – not random orderings

Languages

- For \(A \) in \(N \), \(L(A) = \{ \ w \mid A \Rightarrow^* w \} \)
 - for any non-terminal \(A \) defined for a grammar, the language generated by \(A \) is the set of strings \(w \) that can be derived from \(A \) using the productions
- If \(S \) is the start symbol of grammar \(G \), define \(L(G) = L(S) \)
 - The language derived by \(G \) is the language derived by the start symbol \(S \)

Reduced Grammars

- Grammar \(G \) is reduced iff for every production \(A \rightarrow \alpha \) in \(G \) there is a derivation \(S \Rightarrow^* x A z \Rightarrow^* x \alpha z \Rightarrow^* xyz \)

Ambiguity

- Grammar \(G \) is unambiguous iff every \(w \) in \(L(G) \) has a unique leftmost (or rightmost) derivation
 - Fact: unique leftmost or unique rightmost implies the other
- A grammar without this property is ambiguous
 - Note that other grammars that generate the same language may be unambiguous

Ambiguous Grammar for Expressions

\[
\begin{align*}
\text{expr} & \rightarrow \text{expr} + \text{expr} \mid \text{expr} - \text{expr} \\
& \mid \text{expr} \times \text{expr} \mid \text{expr} / \text{expr} \\
\text{int} & \rightarrow 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9
\end{align*}
\]

- Show that this is ambiguous
 - How? Show two different leftmost or rightmost derivations for the same string
 - Equivalently: show two different parse trees for the same string

Example Derivation

Give a leftmost derivation of \(2+3\times4 \) and show the parse tree
Give a different leftmost derivation of $2 + 3 \times 4$ and show the parse tree

Another Derivation

$\text{expr} \rightarrow \text{expr} + \text{expr} | \text{expr} - \text{expr} | \text{expr} \times \text{expr} | \text{expr} \div \text{expr} | \text{int} \rightarrow 0|1|2|3|4|5|6|7|8|9$

Another Example

Give two different derivations of $5 + 6 + 7$

What’s going on here?

- The grammar has no notion of precedence or associativity
- Solution
 » Create a non-terminal for each level of precedence
 » Isolate the corresponding part of the grammar
 » Force the parser to recognize higher precedence subexpressions first

Classic Expression Grammar

$\text{expr} \rightarrow \text{expr} + \text{term} | \text{expr} - \text{term} | \text{term}$
$\text{term} \rightarrow \text{term} \times \text{factor} | \text{term} / \text{factor} | \text{factor}$
$\text{factor} \rightarrow \text{int} | (\text{expr})$
$\text{int} \rightarrow 0|1|2|3|4|5|6|7$

Derive $2 + 3 \times 4$

$\text{expr} \rightarrow \text{expr} + \text{term} | \text{expr} - \text{term} | \text{term} \times \text{factor} | \text{term} / \text{factor} | \text{factor}$
$\text{factor} \rightarrow \text{int} | (\text{expr})$
$\text{int} \rightarrow 0|1|2|3|4|5|6|7$
Another Classic Example

- Grammar for conditional statements

 \[ifStmt \rightarrow \text{if (cond) stmt} \]

 \[\text{if (cond) stmt else stmt} \]

 » Exercise: show that this is ambiguous

 - How?

Another Derivation

\[ifStmt \rightarrow \text{if (cond) stmt} \]

\[\text{if (cond) stmt else stmt} \]

Solving if Ambiguity

- Fix the grammar to separate if statements with else clause and if statements with no else

 » Done in Java reference grammar

 » Adds lots of non-terminals

- Use some ad-hoc rule in parser

 » “else matches closest unpaired if”