
A-1

1

Topic #13:
Grammar

CSE 413, Autumn 2004

Programming Languages

http://www.cs.washington.edu/education/courses/413/04au/

2

Classes of Languages

1. Regular languages (finite automata)

2. Context-free languages (push-down automata)

3. Context-sensitive languages (linear bounded automata)

4. Recursively-enumerable languages (Turing machine)

Grammar for fm, a little language
1. program → movie name { movieBody } EOF

2. movieBody → prologBlock pageBlocks | pageBlocks
3. prologBlock → prolog { prologStatements }

4. prologStatements → prologStatement | prologStatements prologStatement

5. prologStatement → variableDeclaration
11. variableDeclaration →→→→ id : type(); | id : type(exprList);
12. pageBlocks → pageBlock | pageBlocks pageBlock

13. pageBlock → show (integer) { pageStatements }
14. pageStatements → pageStatement | pageStatements pageStatement

15. pageStatement → { pageStatements } | methodCall; | id = expr;
| if (boolExpr) pageStatement | if (boolExpr) pageStatement else pageStatement

16. expr → term | expr + term | expr - term
17. term → factor | term * factor | term / factor

18. factor → integer | real | (expr) | id | methodCall

19. methodCall → id() | id(exprList) | id.id () | id.id(exprList)
20. exprList → expr | exprList , expr

21. boolExpr → relExpr | ! (relExpr)
22. relExpr → expr == expr | expr > expr | expr < expr

23. type → id 4

Grammar for Java, a big language

• The Java™ Language Specification, 2nd Edition
» Entire document

• 500+ pages

• Grammar productions with explanatory text

» Chapter 18, Syntax
• 8 pages of grammar productions, presented in "BNF-style"

5

Parsing

• The syntax of most programming languages
can be specified by a context-free grammar
(CFG)

• Parsing
» Given a grammar G and a sentence w in L(G),

traverse the derivation (parse tree) for w in some
standard order and do something useful at each
node

» The tree might not be produced explicitly, but the
control flow of a parser corresponds to a traversal

Parse Tree
Example

a = 1 ; if (a + 1) b = 2 ;

program → statement | program statement
statement → assignStmt | ifStmt
assignStmt → id = expr ;
ifStmt → if (expr) stmt
expr → id | int | expr + expr
Id → a | b | c | i | j | k | n | x | y | z
int → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

program

program

statement

statement

ifStmt

assignStmt
statement

expr assignStmt

expr expr

intid

id expr

int

id expr

int

G

w

A-2

7

“Standard Order”

• For practical reasons we want the parser to be
deterministic (no backtracking), and we want
to examine the source program from left to
right.

8

Common Orderings

• Top-down
» Start with the root

» Traverse the parse tree depth-first, left-to-right (leftmost
derivation)

» LL(k)

• Bottom-up
» Start at leaves and build up to the root

• Effectively a rightmost derivation in reverse

» LR(k)

9

“Something Useful”

• At each point (node) in the traversal, perform some
semantic action
» Construct nodes of full parse tree

» Construct abstract syntax tree

» Construct linear, lower-level representation

» Generate target code on the fly → 1-pass compiler

10

Context-Free Grammars

• Formally, a grammar G is a tuple <N,Σ,P,S>
where
» N a finite set of non-terminal symbols

» Σ a finite set of terminal symbols

» P a finite set of productions
• A subset of N × (N ∪ Σ)*

» S the start symbol, a distinguished element of N

11

Standard Notations

a, b, c elements of Σ terminals

w, x, y, z elements of Σ* strings of terminals

A, B, C elements of N non-terminals

X, Y, Z elements of N ∪ Σ grammar symbols

α, β, γ elements of (N ∪ Σ)* strings of symbols

A→α (or A ::= α) if <A, α > in P

"non-terminal A can take the form α"

12

Derivation Relations

• α A γ⇒ α β γ iff A → β in P

• A ⇒* w if there is a chain of productions
starting with A that generates w
» "Non-terminal A derives the string of terminals w"

A-3

13

Derivation Relations

• w A γ⇒lm w β γ iff A → β in P
» derive by always picking the first non-terminal

from the left

• α A w ⇒ rm α β w iff A → β in P
» derive by always picking the first non-terminal

from the right

• We will only be interested in leftmost and
rightmost derivations – not random orderings

14

Languages

• For A in N, L(A) = { w | A ⇒* w }
» for any non-terminal A defined for a grammar, the

language generated by A is the set of strings w
that can be derived from A using the productions

• If S is the start symbol of grammar G, define
L(G) = L(S)
» The language derived by G is the language derived

by the start symbol S

15

Reduced Grammars

• Grammar G is reduced iff for every
production A → α in G there is a derivation

S =>* x A z => x α z =>* xyz

16

Ambiguity

• Grammar G is unambiguous iff every w in
L(G) has a unique leftmost (or rightmost)
derivation
» Fact: unique leftmost or unique rightmost implies

the other

• A grammar without this property is ambiguous
» Note that other grammars that generate the same

language may be unambiguous

17

Ambiguous Grammar for Expressions

expr → expr + expr | expr - expr
| expr * expr | expr / expr | int

int → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

• Show that this is ambiguous
» How? Show two different leftmost or rightmost

derivations for the same string

» Equivalently: show two different parse trees for
the same string

Example Derivation
Give a leftmost derivation of 2+3*4 and show the parse tree

expr → expr + expr | expr - expr
| expr * expr | expr / expr | int

int → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

A-4

Give a different leftmost derivation of 2+3*4 and show the parse tree

Another Derivation
expr → expr + expr | expr - expr

| expr * expr | expr / expr | int
int → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Give two different derivations of 5+6+7

Another Example
expr → expr + expr | expr - expr

| expr * expr | expr / expr | int
int → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

21

(extra space)

22

What’s going on here?

• The grammar has no notion of precedence or
associativity

• Solution
» Create a non-terminal for each level of precedence
» Isolate the corresponding part of the grammar
» Force the parser to recognize higher precedence

subexpressions first

23

Classic Expression Grammar

expr → expr + term | expr – term | term

term → term * factor | term / factor | factor

factor → int | (expr)

int → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

expr → expr + term | expr – term | term
term → term * factor | term / factor | factor
factor → int | (expr)
int → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

Derive 2 + 3 * 4

A-5

Derive 5 + 6 + 7
expr → expr + term | expr – term | term
term → term * factor | term / factor | factor
factor → int | (expr)
int → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

Derive 5 + (6 + 7)
expr → expr + term | expr – term | term
term → term * factor | term / factor | factor
factor → int | (expr)
int → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

27

Another Classic Example

• Grammar for conditional statements
ifStmt → if (cond) stmt

| if (cond) stmt else stmt

» Exercise: show that this is ambiguous
• How?

ifStmt → if (cond) stmt
| if (cond) stmt else stmtOne Derivation

Another Derivation
ifStmt → if (cond) stmt

| if (cond) stmt else stmt

30

Solving if Ambiguity

• Fix the grammar to separate if statements with
else clause and if statements with no else
» Done in Java reference grammar

» Adds lots of non-terminals

• Use some ad-hoc rule in parser
» “else matches closest unpaired if”

