
A-1

1

Topic #11:
Compilers

CSE 413, Autumn 2004

Programming Languages

http://www.cs.washington.edu/education/courses/413/04au/

2

Credits

• Much of the material in the following lectures is
» derived from Doug Johnson, CSE 413…

» derived from Hal Perkins, CSE 413 and CSE 582…

» derived from…
• Cornell CS 412-3 (Teitelbaum, Perkins)

• Rice CS 412 (Cooper, Kennedy, Torczon)

• UW CSE 401 (Chambers, Ruzzo, et al)

3

References

• Primary Reference
» Sebesta text, Chapters 3 and 4
» READ 3-3.3. SKIM 3.4-3.5
» READ Chapter 4

• Other references
» Engineering a Compiler by Keith Cooper & Linda

Torczon
» Modern Compiler Implementation in Java, by Appel

4

Why are we doing this?

• Execute this ...

int nPos = 0;

int k = 0;

while (k < length) {

if (a[k] > 0) {

nPos++;

}

}

• How?

5

Interpreters & Compilers

• Interpreter

• Compiler

6

Common Issues

• Compilers and interpreters both must read the
input – a stream of characters – and
“understand” it; analysis

w h i l e (k < l e n g t h) { <nl> <tab> i f (a [k

] > 0) <nl> <tab> <tab>{ n P o s + + ; } <nl> <tab> }

A-2

7

Interpreter

• Interpreter
» Execution engine
» Program execution interleaved with analysis

running = true;
while (running) {

analyze next statement;
execute that statement;

}

8

Compiler

• Read and analyze entire program

• Translate to semantically equivalent program in
another language
» Presumably easier to execute or more efficient

» Should “improve” the program in some fashion

• Offline process

9

Typical Implementations

• Compilers
» FORTRAN, C, C++, Java, C#, COBOL, etc. etc.

• Interpreters
» PERL, Python, awk, sed, sh, csh, postscript

printer, Java VM

» Functional languages like Scheme and Smalltalk
where the environment is dynamic

10

Hybrid approaches

• Well-known example: Java
» Compile Java source to byte codes – Java Virtual Machine

language (.class files)
» Execution

11

Why Study Compilers? Programmer

• Become a better programmer
» Insight into interaction between languages, compilers, and

hardware

» Understanding of implementation techniques

» What is all that stuff in the debugger anyway?

» Better intuition about what your code does

• You might even write a compiler some day!

12

Why Study Compilers? Designer

• Compiler techniques are everywhere
» Parsing (little languages, interpreters)

» Database engines

» AI: domain-specific languages

» Text processing
• Tex/LaTex -> dvi -> Postscript -> pdf

» Hardware: VHDL; model-checking tools

A-3

13

Why Study Compilers? Theoretician

• Fascinating blend of theory and engineering
» Direct applications of theory to practice

» Some very difficult problems (NP-hard or worse)

14

Why Study Compilers? Education

• Ideas from many parts of CSE
» AI: Greedy algorithms, heuristic search
» Algorithms: graph algorithms, dynamic programming,

approximation algorithms
» Theory: Grammars DFAs and PDAs, pattern matching,

fixed-point algorithms
» Systems: Allocation & naming, synchronization, locality
» Architecture: pipelines & hierarchy management,

instruction set use

• Application to many other problem domains

15

Structure of a Compiler

• First approximation
» Front end:

• Read source program and understand structure/meaning

» Back end:
• Generate equivalent target language program

Source TargetFront End Back End

16

Implications

Source TargetFront End Back End

17

Intermediate Representation (IR)

Source TargetFront End Back End

Front End

• Split into two parts

• Both can be generated automatically or by hand
» Source language specified by a formal grammar

» Tools read the grammar and generate scanner & parser
(either table-driven or hard coded)

Scanner Parser

A-4

19

Tokens

• Token stream: Each significant lexical chunk
of the program is represented by a token
» Operators & Punctuation: {}[]!+-=*;: …

» Keywords: if while return goto

» Identifiers:
(variables, procedure names…)

» Constants:
(int, floating-point character, string, …)

20

Scanner Example

• Input text
// this line is a simple comment

if (x >= y) y = 42;

• Token Stream

IF LPAREN ID(x) OP_GEQ ID(y)

RPAREN ID(y) OP_ASSIGN INT(42) SCOLON

21

Parser Output (IR)

• Many different forms

• Common output from a parser is an abstract
syntax tree
» Essential meaning of the program without the

syntactic noise

22

Parser Example

• Token Stream Input • Abstract Syntax Tree

IF LPAREN ID(x)

GEQ ID(y) RPAREN

ID(y) BECOMES

INT(42) SCOLON

ifStmt

>=

ID(x) ID(y)

assign

ID(y) INT(42)

23

Static Semantic Analysis

• During or (more common) after parsing
» Type checking

» Check for language requirements

» Preliminary resource allocation

» Collect other information needed by back end
analysis and code generation

24

Back End

• Responsibilities
» Translate IR into target machine code

» Should produce fast, compact code

» Should use machine resources effectively
• Registers

• Instructions

• Memory hierarchy

A-5

25

Back End Structure

• Typically split into two major parts with sub
phases
» “Optimization” – code improvements

» Code generation

26

The Result

if (x >= y)

y = 42;
mov eax,[ebp+16]
cmp eax,[ebp-8]
jl L17
mov [ebp-8],42
L17:

x y ge
{/y 42 def}
if

x86 assembly language

Postscript
4: iload_1
5: iload_2
6: if_icmplt 12
9: bipush 42
11: istore_2
12:

Java bytecode

27

Some Ancient History

• 1950’s. Existence proof
» FORTRAN I (1954) – competitive with hand-

optimized code

• 1960’s
» New languages: ALGOL, LISP, COBOL

» Formal notations for syntax

» Fundamental implementation techniques
• Stack frames, recursive procedures, etc.

28

Some Later History

• 1970’s
» Syntax: formal methods for producing compiler

front-ends; many theorems

• 1980’s
» New languages (functional; Smalltalk & object-

oriented)
» New architectures (RISC machines, parallel

machines, memory hierarchy issues)
» More attention to back-end issues

29

Some Recent History
• 1990’s – now

» Compilation techniques appearing in many new
places
• Just-in-time compilers (JITs)
• Whole program analysis

» Phased compilation – blurring the lines between
“compile time” and “runtime”

» Compiler technology critical to effective use of
new hardware (RISC, Itanium, complex
memories)

