
A-1

1

Topic #10:
Java Input / Output

CSE 413, Autumn 2004

Programming Languages

http://www.cs.washington.edu/education/courses/413/04au/

2

Readings and References

• Reading

• Other References
» Section "I/O" of the Java tutorial
» http://java.sun.com/docs/books/tutorial/essential/io/index.html

3

Input & Output

• Program input can come from a variety of
places:
» the mouse, keyboard, disk, network…

• Program output can go to a variety of places:
» the screen, speakers, disk, network, printer…

4

"Streams" are the basic I/O objects

keyboard,
disk file,
network,
etc

display,
disk file,
network,
etc

from Sun tutorial on I/O

5

The stream model

• The stream model views all data as coming
from a source and going to a sink

Source SinkStream

• Sources and sinks can be files, memory, the
console, network ports, serial ports, etc

6

Streams

• Getting data from source to sink is the job of
an object of a stream class

• Use different streams for doing different jobs

• Streams appear in many packages
» java.io - basic stream functionality, files

» java.net - network sockets

» javax.comm - serial ports

» java.util.zip - zip files

A-2

7

Streams are layered classes

• Inheritance and composition both play key
roles in defining the various types of streams

• Each layer adds a little bit of functionality

• The nice thing about this design is that many
programs don't need to know exactly what
kind of stream they are working with

8

Classes of Streams

1. Byte streams
» InputStream and Output Stream
» Binary data: sounds, images, etc.
» Use this for binary data or primitive objects

2. Character-based streams
» Reader and Writer
» Use this if working with text

Mismatch?
» If you get an InputStream or OutputStream from somewhere else, you

can convert it to a Reader or a Writer as needed by wrapping it with an
InputStreamReader or OutputStreamWriter

9

OutputStream

• An OutputStream sends bytes to a sink
» OutputStream is an abstract class

» the actual "write" method depends on the device
being written to

• Key methods:

abstract void write(int b) throws IOException

void write(byte[] b) throws IOException

void close() throws IOException

10

OutputStream subclasses

• Subclasses differ in how they implement write()
and in what kind of sink they deal with:
» FileOutputStream: sink is a file on disk

» ByteArrayOutputStream: sink is an array of bytes

» PipedOutputStream: sink is a pipe to another thread

• Other subclasses process output streams
» FilterOutputStream: process the stream in transit

» ObjectOutputStream: primitives and objects to a sink

11

FilterOutputStream

• Constructor takes an instance of OutputStream

• Resulting object is also instance of OutputStream

• These classes decorate the basic OutputStream
implementations with extra functionality

• Subclasses of FilterOutputStream in java.io:
» BufferedOutputStream: adds buffering for efficiency

» PrintStream: supports display of data in text form (using the
default encoding only)

» DataOutputStream: write primitive data types and Strings
(in binary form)

12

InputStream

• An InputStream gets bytes from a source
» InputStream is an abstract class

» The actual "read" method depends on the source
being read from

» Key methods:

abstract int read() throws IOException

int read(byte[] b) throws IOException

void close() throws IOException

A-3

13

InputStream subclasses

• Subclasses differ in how they implement read()
and in what kind of source they deal with:
» FileInputStream: source is a file on disk

» ByteArrayInputStream: source is an array of byte

» PipedInputStream: source is pipe from another thread

• Other subclasses process input streams

» FilterInputStream: process the stream in transit

» ObjectInputStream: primitives and objects from a
source

14

FilterInputStream

• Constructor takes an instance of InputStream

• Resulting object is also instance of InputStream

• These classes “decorate” the basic InputStream
implementations with extra functionality

• Some useful subclasses
» BufferedInputStream: adds buffering for efficiency

» ZipInputStream: read zip files

» DataInputStream: read primitive data types and Strings (in
binary form)

15

Reader and Writer

• Reader and Writer are abstract classes that are
Unicode aware and can use a specified encoding
to translate Unicode to/from bytes

• Subclasses implement most of the functionality
» BufferedReader, BufferedWriter

• add buffering for efficiency

» StringReader, StringWriter

» PipedReader, PipedWriter

» InputStreamReader, OutputStreamWriter

16

System.in, System.out

• System.in is a predefined InputStream

• Can convert to a BufferedReader:

• System.out is a predefined OutputStream

(a PrintStream)

• Can convert to a PrintWriter like this:

BufferedReader r =
new BufferedReader(new InputStreamReader(System.in));

PrintWriter w =
new PrintWriter(new OutputStreamWriter(System.out),true);

17

Read a String from the console

/* ask for the names we were not given */

BufferedReader console =
new BufferedReader(new InputStreamReader(System.in));

for (int i=count; i<3; i++) {
System.out.print("name "+i+"? ");
String petName = console.readLine();
if (petName == null) {

petName = "<blank>";
}
names.add(petName);

}

18

Sources and Sinks - Console

• When reading from the console
» Source:

» Sink:

• When writing to the console
» Source:

» Sink:

A-4

19

Sources and Sinks - Files

• When reading from a file
» Source:

» Sink:

• When writing to a file
» Source:

» Sink:

20

FileInputStream and FileOutputStream

• The file streams read or write from a file on the
native file system
» FileInputStream

• retrieve bytes from a file and provide them to the program

» FileOutputStream
• send bytes to a file from your program

• If used by themselves, FileInputStream and
FileOutputStream are for binary I/O
» just plain bytes in and out with no interpretation as

characters or anything else

21

"bytes from a file" plus "bytes as text"

• Create new FileInputStream and connect it to a
specific file

• "decorate" the stream with an InputStreamReader
that will do Unicode translation for you

FileInputStream(String name)

InputStreamReader(InputStream in)

InputStreamReader(InputStream in, String enc)

22

"bytes from a file as text"

• Shortcut: Create FileReader and connect it to a file
» Uses default encoding and buffer sizes.

FileReader(File file)

FileReader(FileDescriptor fd)

FileReader(String fileName)

23

prepare to read a file

public TextRead(String fn) throws IOException {
InputStream in;
in = new FileInputStream(fn);
textReader = new BufferedReader(new InputStreamReader(in));

}

24

readline()

• Read one line from a BufferedReader
/**
* Read one line from the text file and return it as a String to the caller.
* Note that the line might be null (at end of file), empty (0 characters) or
* blank (all whitespace). Of course, it might also be a non-blank String with
* some useful characters in it.
* @return a String containing the next line or null if
* we are at the end of the file
*/
private String getNextLine() throws IOException {

return textReader.readLine();
}

A-5

25

Detecting end of file

• End of file is expected when using readline()

• So the method returns null if we are end of
file

String myLine = tr.getNextLine();
while (myLine != null) {

System.out.println(">> "+myLine);
myLine = tr.getNextLine();

}

26

close when done

• After reading through the file, you should
close the stream, since an open file takes up
system resources and prevents other programs
from using the file

/**
* Close the stream.
*/
public void close() throws IOException {

textReader.close();
}

27

"bytes to a file as text"
• Create new PrintWriter and connect it to a file

using a FileWriter
» PrintWriter provides the text formatting capabilities

» FileWriter provides the connection between the
PrintWriter and the actual file

» FileWriter is a convenience class like FileReader
• could use OutputStreamWriter with a

FileOutputStream
PrintWriter(Writer out)

Create a new PrintWriter, without automatic line flushing.

FileWriter(String fileName)
Constructs a FileWriter object given a file name.

28

prepare to write a file

public TextRW(String fn) throws IOException {
File sink = new File(fn);
sink.createNewFile();
System.out.println("Created "+sink.getAbsolutePath());
textWriter = new PrintWriter(new BufferedWriter(new FileWriter(sink)));

}

29

println(...)

• Print formatted representations of objects and
primitive type to a text-output stream

/**
* Write one line on the output file.
* @param line the line of text to write out
*/
public void writeOneLine(String s) {

textWriter.println(s);
}

30

close when done

• After writing the file, you should close the stream

• Why?

/**
* Close the stream.
*/
public void close() throws IOException {

textWriter.close();
}

A-6

31

The File class

• Manages an entry in a directory (a pathname)

• Several constructors are available
» File(String pathname)

• pathname string

» File(String parent, String child)
• parent pathname string and a child pathname string.

» File(File parent, String child)
• parent abstract pathname and a child pathname string.

• The File() constructors create a pathname
object in memory, NOT a new file on disk

32

File class examples
File f = new File(“c:\autoexec.bat”);

File app = new File(“c:\apps\JPadPro”,“JPadPro.exe”);

File jppDir = new File(“c:\apps\JPadPro”);

File jppApp = new File(jppDir, “JPadPro.exe”);

33

File class methods

• Create, rename, delete a file
» createNewFile(), createTempFile(), renameTo(), delete()

• Determine whether a file exists and access limitations
» exists(), canRead(), canWrite()

• Get file info
» getParent(), getCanonicalPath(), length(), lastModified()

• Create and get directory info
» mkdirs(), list(), listFiles(), getParent()

• Etc, etc

34

APPENDIX - Writing output to the console

• Java provides standard PrintStream System.out
» has methods to print text to the console window

• Some operations:
• System.out.println(<expression>);
• System.out.print(<expression>);

• expression can be
» primitive type: an int, double, char, boolean
» or an object of any class type

35

Printing objects on System.out

• Any object can be printed on System.out
• Rectangle rect = new

Rectangle(30,50,100,150,Color.blue,true);

• System.out.println(rect);

• Can be very useful for debugging
» Put System.out.print or println method calls in

your code to display a message when that place is
reached during execution

» Particularly useful if the string version of the
object has useful information in a readable format

36

Object Representation on System.out

• What actually happens when an object is printed?
» The toString() method belonging to the object

provides the string to be printed

» All classes have a default toString(), the one defined
by the Object class (not very descriptive)

» But you can provide a custom version of toString() in
any of your classes very easily

public String toString() {
return getClass().getName()+"@"+Integer.toHexString(hashCode());
}

