
CSE142 A-1

1

Topic #8:
Arrays and Typing Rules

CSE 413, Autumn 2004

Programming Languages

http://www.cs.washington.edu/education/courses/413/04au/

2

Readings and References

• Reading
» Section 12.3 of Sebesta

» "Arrays", Java tutorial
• http://java.sun.com/docs/books/tutorial/java/data/arrays.html

3

Array Example

public class ArraySample {

public ArraySample() {

names = new String[3];

names[0] = "Sally";

names[1] = "Splat";

names[2] = "Google";

for (int i=0; i<names.length; i++) {

System.out.println("Name "+i+" is "+names[i]);

}

}

String[] names;

}

4

Array Example
ArrayExample

names

String[]

index 0

index 1

index 2

String

"Sally"

String

"Splat"

String

"Google"

length : 3

5

Java Array Object

• Arrays are objects! They...
» Must be instantiated with new unless immediately

initialized

» Can contain Object references or primitive types

» Have class members (length, clone(),…)

» Have zero-based indexes

» Throw an exception if bounds are exceeded

6

Array Creation

String[] myArray = new String[10];

String[] myArray = { “Java”,”is”,”cool”};

boolean okay = doLimitCheck(x,new int[] {1,100});

CSE142 A-2

7

Passing Array Objects to Methods

• You must declare that a method parameter is an Array:
public static void myFunction(String[] args)

• Arrays are objects and so you are passing a reference
when you call a method with an array

• Can myFunction modify the array seen by the caller?

8

The Arrays Class

• There is a class called java.util.Arrays
» Note the capital A, this is a class name

» part of package java.util

» utility functions for using arrays
• search

• sort

• initialize

» These are static methods so they exist and can be
used without creating an object first

9

Reference vs. Primitive Types
• A few Java types are primitive:

• int, double, boolean, and a few other numeric types we haven't
seen

» Are atomic chunks with no parts (no instance variables)

» Exist without having to be allocated with new

» Cannot be message receivers, but can be arguments of
messages and unary and binary operators

• All others are reference types:
• Rectangle, BankAccount, Color, String, etc.

» Instances of the class are created using “new”

» Can have instance variables and methods

» All are special cases of the generic type “Object”
10

How to check types?

• Type S is a subtype of type T if we can use an object of type S
anywhere an object of type T is expected

• Imagine ColoredPoint extends Point

class Point {

int x, y;

}

class ColoredPoint extends Point {

int color;

}

Examples from Badros & Borning (1998)

11

Java Typing Example #1

Point[] p_array = new Point[3];

p_array[0] = new Point();

p_array[1] = new ColoredPoint();

int j = (p_array[0]).x;

int k = (p_array[1]).x

12

Java Typing Example #2

ColoredPoint[] cp_array = new ColoredPoint[3];

Point[] p_array = cp_array;

p_array[0] = new ColoredPoint();

p_array[1] = new Point();

int c = (cp_array[1]).color);

CSE142 A-3

13

What went wrong?

• Scheme checks types dynamically

• Java checks most types statically

» Uses covariant rule for arrays – not sound!

» So adds a runtime check

14

General type checking rules (1)

• Type S is a subtype of type T if we can use an object of type S
anywhere an object of type T is expected

• Contravariant rule: S is subtype of T if
1. S provides all the ops(methods) that T does (maybe more)

2. For every op in T, corresponding op in S has same number of arguments
and results

3. The types of the results of S’s ops are subtypes of the types of
corresponding results of T’s ops

4. The types of the arguments of T’s ops are subtypes of the types of the
corresponding arguments of S’s ops

• Covariant rule: same as above except
4. The types of the arguments of S’s ops are subtypes of the types of the

corresponding arguments of T’s ops

15

General type checking rules (2)

• Type S is a subtype of type T if we can use an object of type S
anywhere an object of type T is expected

• Invariant rule: S is subtype of T if
1. S provides all the ops(methods) that T does (maybe more)
2. For every op in T, corresponding op in S has same number of arguments

and results
3. The types of the results of S’s ops are the same as the types of

corresponding results of T’s ops
4. The types of the arguments of S’s ops are the same as the types of the

corresponding arguments of T’s ops

» Java uses contravariant rule for arrays, invariant rule for
everything else

16

Non-Java Examples (1)
Type Color
Type GrayScaleColor (sub type of color)
Type Point:

int x();
int y();

Type ColoredPoint:
int x();
int y();
Color mycolor();

Type GrayScalePoint
int x();
int y();
GrayScaleColor mycolor();

ColoredPoint subtype of Point??

GrayScalePoint subtype of ColoredPoint??

17

Non-Java Examples (2)
Type Number
Type Integer (sub type of Number)
Type Point:

Number x();
Number y();
void SetDotSize (Integer)

Type ColoredPoint:
Number x();
Number y();
void SetDotSize (Number);

ColoredPoint subtype of Point??

18

Java Examples – what’s legal?
ColoredPoint extend Point

class PointMaker {
Point makePoint();

}
class PointEater {

void eat (Point p);
}
class ColoredPointMaker1 {

ColoredPoint makePoint()
}
class ColoredPointMaker2 extends PointMaker {

ColoredPoint makePoint()
}
class ColoredPointEater1 {

void eat (ColoredPoint p);
}
class ColoredPointEater2 extends PointEater{

void eat (ColoredPoint p);
}

CSE142 A-4

19

Recall: Java typing problem

ColoredPoint[] cp_array = new ColoredPoint[3];

Point[] p_array = cp_array;

p_array[0] = new ColoredPoint();

p_array[1] = new Point();

int c = (cp_array[1]).color);

20

What goes wrong with Arrays?

class PointArray {

Point get(int);

void set (int, Point);

}
Class ColoredPointArray {

ColoredPoint get(int);

void set (int, ColoredPoint);

}

Soundness rule:

21

Are subclasses subtypes in Java?

22

An Ordered Collection: ArrayList

• ArrayList is a Java class that specializes in
representing an ordered collection of things

• We can store any kind of object in an
ArrayList
» myList.add(theDog);

• We can retrieve an object from the ArrayList
by specifying its index number
» myList.get(0)

23

ArrayList
• ArrayList()

» This constructor builds an empty list with an
initial capacity of 10

• int size()

• boolean add(Object o)

• Object get(int index)

24

Example

import java.util.*; to use ArrayList
ArrayList names = new ArrayList ();

int numberOfNames = names.size();

names.add("Billy");

names.add("Susan");

names.add("Frodo");

Object x = names.get(0);

Object y = names.get(1);

CSE142 A-5

25

Using ArrayLists : add

• Adding things

names.add("Billy");

• The object can be of any class type
» String, File, InputStream, …
» can’t add “primitive” types like int or double directly

26

A Problem

• We want to get things out of an ArrayList

• We might write the following:
public void printFirstNameString(ArrayList names) {

String name = names.get(0);

System.out.println("The first name is " + name);

}

• Problem?

27

Casting

• The pattern is
» (<class-name>)<expression>

• For example
String name = (String)names.get(0);

• Casting an object does not change the type of
the object

• A cast is a promise by the programmer that the
object can be used to represent something of
the stated type and nothing will go wrong

28

Miscasting

public void printFileList() {

for (int i=0; i<names.size(); i++) {

File f = (File)names.get(i);
System.out.println(f);

}

}

29

APPENDIX

30

Array Declaration and Creation

• Array have special type and syntax:
<element type>[] <array name> = new <element type> [<length>];

• Arrays can only hold elements of the specified type
» element type can be int, double, etc.

» type can be Object, in which case very similar to ArrayList

• <length> is any positive integer expression

• Elements of newly created arrays are initialized
» but generally you should provide explicit initialization

• Arrays have an instance variable that stores the length
<array name>.length

CSE142 A-6

31

Array Element Access

• Access an array element using the array name
and position: <array name> [<position>]

• Details:
» <position> is an integer expression.

» Positions count from zero

» Type of result is the element type of the array

• Can update an array element by assigning to it:
<array name> [<position>] = <new element value> ;

32

Looping Over Array Contents

• The length attribute makes looping over
Array objects easy:

for (index=0; index<myArray.length; index++) {
System.out.println(myArray[index]);

}

• The length attribute is a read-only value
» You can't change the size of the array after it

has been created

33

Array Summary

• Arrays are the fundamental low-level collection
type built in to the Java language.
» Also found in essentially all programming languages

• Size fixed when created

• Indexed access to elements

• Used to implement higher-level, richer container
types
» ArrayList for example

» More convenient, less error-prone for users
34

Using ArrayLists : import

• ArrayList is part of the java.util package
» import java.util.ArrayList; to use ArrayList

• The import statement tells the Java compiler
where to look when it can’t find a class
definition in the local directory
» We tell the compiler to look in package java.util

for the definition of ArrayList by putting an
import statement at the top of the source code file

» Java always looks in package java.lang on its own

35

Using ArrayLists : size

• Getting the size

int numberOfNames = names.size();

• size() method returns integer value that caller
can use to control looping, check for limits, etc
» Design pattern: The object keeps track of relevant

information, and can tell the caller when there is a
need to know

36

Using ArrayLists : constructor
• Creating a new ArrayList object

• ArrayList names = new ArrayList ();

• There are several constructors available
» ArrayList()

• Construct an empty list with an initial capacity of 10

» ArrayList(int initialCapacity)

• Construct an empty list with the specified initial capacity

» ArrayList(Collection c)

• Construct a list containing elements from another collection

