
A-1

1

Topic #7:
Classes, Interfaces, Inheritance

CSE 413, Autumn 2004

Programming Languages

http://www.cs.washington.edu/education/courses/413/04au/

2

Readings and References

• Reading in Java tutorial
» Object Basics and Simple Data Objects

» Classes and Inheritance

» Interfaces and Packages
» http://java.sun.com/docs/books/tutorial/java/TOC.html#concepts

3

Recall: Objects and Classes

• A class is a definition of a type of thing
1. State

2. Behavior

• An object is a particular thing
» An object is an instance of a class

Example : java.util.Random
package java.util;
public class Random implements java.io.Serializable {

static final long serialVersionUID = 3905348978240129619L;
private long seed;
private final static long multiplier = 0x5DEECE66DL;
private final static long addend = 0xBL;
private final static long mask = (1L << 48) - 1;
public Random() {...}
public Random(long seed) {...}
synchronized public void setSeed(long seed) {...}
synchronized protected int next(int bits) {...}
private static final int BITS_PER_BYTE = 8;
private static final int BYTES_PER_INT = 4;
public void nextBytes(byte[] bytes) {...}
public int nextInt() {...}
public int nextInt(int n) {...}
public long nextLong() {...}
public boolean nextBoolean() {...}
public float nextFloat() {...}
public double nextDouble() {...}
private double nextNextGaussian;
private boolean haveNextNextGaussian = false;
synchronized public double nextGaussian() {...}

}

5

Constructors
• Constructors are special methods that get called with the
new operator

Mobile m12 = new Mobile(10);

• The name of a constructor is the same as the name of the
class

• What does it do?

• What if there is no constructor?

6

Multiple Constructors
• There are often several constructors for any one class
• They all have the same name (the name of the class)
• They must differ in their parameter lists

» Mobile m10 = new Mobile();

» Mobile m12 = new Mobile(10);

• Return value?

A-2

7

Methods

• The method header declares the type and
name for each required parameter

/**
* Add a simple weight right at the attachment
point.

* @param f a weight or lifting force
*/
public void addWeight(double f) {

moby.add(new WeightAttachment(f));
}

8

Examples from class java.lang.String
• toLowerCase()

Converts all of the characters in this String to lower case
using the rules of the default locale

• startsWith(String prefix)

Tests if this string starts with the specified prefix

• substring(int beginIndex, int
endIndex)

Returns a new string that is a substring of this string

9

Method calls
• Recall: substring(int beginIndex, int endIndex)

int beginIndex = 1;

String myName = “Lex Luther”;

String twoChar = myName.substring(beginIndex, beginIndex+2);

» twoChar is now a reference to a String containing “ex”

• If necessary and possible, the compiler will convert the
value provided by the caller to the type of the value that
was requested by the method in the formal parameter list

10

Returning a value to the caller
/**

* Get current X value.

* @return the X coordinate

*/

public int getX() {

return x;

}

• “Accessor” methods
public int getX()

public int getWidth()

11

Method Overloading

• Classes may declare multiple methods with the same
name, provided the signature is different

• The signature of a method is:

• For example, System.out.println is overloaded
for many types

println(char c);

println(double d);

println(String s);

12

Abstract the behavior of classes
• We sometimes want to use one or more methods that

are available for various objects, even though they are
not all of the same class

• Consider the attachments to a mobile
» we want to know is it balanced, what's the weight, and what

are the x and y torque values

• So we can promise that:
» We don’t know exactly what kind of an attachment it is, but

we do know that it can tell us if it is balanced, what the
weight and torque values are

A-3

13

Interface

• You can say that any class that claims to be an
Attachment will guarantee that it has methods
for all the things that any Attachment must do

• The definition of the interface shows exactly
what the methods must look like

public interface Attachment {
/**

* Check to see if this Attachment is balanced.

* An Attachment is balanced if all its constituent parts are balanced.

* @return true if the Attachment is balanced, false if not.

*/

public boolean isBalanced();

/**

* Return the total weight of this Attachment.

* @return the total weight of this Attachment
*/

public double getWeight();

/**

* Get the x-torque. This is the torque applied around the x-axis by

* the Attachment to the Mobile at the attachment point.

* @return the torque around the x-axis.

*/

public double getXTorque();

/**

* Get the y-torque. This is the torque applied around the y-axis by

* the Attachment to the Mobile at the attachment point.

* @return the torque around the y-axis.

*/

public double getYTorque();

}

15

Using an interface in a class definition

• Each of the classes that wants to be considered
an Attachment must say so at the very
beginning of the class definition

public class Branch implements Attachment {

16

Using Attachment Interface

public class Mobile {
...
Attachment attachments[] = ...;

public double getWeight() {
double w = 0;
for (int ii=0;ii<attachments.length;ii++) {

Attachment a = attachments[ii];
w += a.getWeight();

}
return w;

}
...

}

17

Cast to Attachment
• Tell the compiler that the ArrayList contains objects

that are Attachments
public class Mobile {

...
ArrayList myList = ...;

public double getWeight() {
double w = 0;
Iterator iter = myList.iterator();
while (iter.hasNext()) {

Attachment a = (Attachment)iter.next();
w += a.getWeight();

}
return w;

}

18

Relationships between classes

• Classes can be related via composition
» This is often referred to as the “has-a” relationship

» eg, a Mobile has a list in an ArrayList of
Attachments

• Classes can also be related via inheritance
» This is often referred to as the “is-a” relationship

» eg, an ArrayList is an AbstractList

A-4

19

Mobile has a list of Attachments

Mobile
List moby

ArrayList

int size

item 0

item 1

item 2

etc

WeightAttachment

Branch

Branch

ArrayList is a AbstractList

is a

is a

is a

21

Why use inheritance?
• Code simplification

» Avoid doing the same operation in two places

» Avoid storing “matching state” in two places

• Code simplification
» We can deal with objects based on their common

behavior, and don’t need to have special cases for
each subtype

• Code simplification
» Lots of elegant code has already been written - use

it, don’t try to rewrite everything from scratch
22

Reduce the need for duplicated code

• Suppose we have two Attachments:
» Branch has getXTorque() method

» LiftingBranch has getXTorque() method

» and they are implemented exactly the same way

• We can implement this method once in a base
class, and then extend it and add or replace
implementations of other methods as we like

23

Branch class

24

Syntax of inheritance

• Specify inheritance relationship using extends

public class Branch implements Attachment {
…

public double getXTorque() {
return getWeight()*length*Math.sin(theta);

}
}

public class LiftingBranch extends Branch { …

A-5

25 26

LiftingBranch : subclass of Branch

27

Using the superclass constructor
• Constructor of the superclass is called to do much

(or all) of the initialization for the subclass

public class Branch implements Attachment {
public Branch(double angle, double len, Mobile m) {

theta = angle;
length = len;
structure = m;

}
...

public class LiftingBranch extends Branch {
public LiftingBranch(double angle, double len, Mobile mA,Mobile mB) {

super(angle,len,mA);
this.lift = mB;

}
...

28

this() and super() as constructors

• You can use an alias to call another constructor
» super(...) to call a superclass constructor

» this(…) to call another constructor from same class

• The call to the other constructor must be the first
line of the constructor
» If neither this() nor super() is the first line in a

constructor, a call to super() is inserted automatically by
the compiler. This call takes no arguments. If the
superclass has no constructor that takes no arguments,
the class will not compile.

29

Overriding methods
• Overriding methods is how a subclass refines or

extends the behavior of a superclass method

• Manager and Executive classes extend Employee
» Employee:

double pay() {return hours*rate + overtime*(rate+5.00);}

• How do we specify different behavior for
Managers and Executives?

30

Overriding methods

public class Employee {

// other stuff

public float pay() {

return hours*rate + overtime*(rate+5.00);

}

}

public class Manager extends Employee {

// other stuff

public float pay() {

return hours*rate;

}

}

A-6

31

instanceof

• Used to test an object for class membership

• Tests for a relationship anywhere along the
hierarchy
» Also tests whether an object’s class implements an

interface

• What class must <classname> represent for the
following expression to be true always?

if (v instanceof <classname>) { … }

if (bunch.get(i) instanceof Branch) {…}

