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Topic #7:
Classes, Interfaces, Inheritance

CSE 413, Autumn 2004

Programming Languages

http://www.cs.washington.edu/education/courses/413/04au/
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Readings and References

• Reading in Java tutorial
» Object Basics and Simple Data Objects

» Classes and Inheritance

» Interfaces and Packages
» http://java.sun.com/docs/books/tutorial/java/TOC.html#concepts
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Recall: Objects and Classes

• A class is a definition of a type of thing
1. State

2. Behavior

• An object is a particular thing
» An object is an instance of a class

Example : java.util.Random
package java.util;
public class Random implements java.io.Serializable {

static final long serialVersionUID = 3905348978240129619L;
private long seed;
private final static long multiplier = 0x5DEECE66DL;
private final static long addend = 0xBL;
private final static long mask = (1L << 48) - 1;
public Random() {...}
public Random(long seed) {...}
synchronized public void setSeed(long seed) {...}
synchronized protected int next(int bits) {...}
private static final int BITS_PER_BYTE = 8;
private static final int BYTES_PER_INT = 4;
public void nextBytes(byte[] bytes) {...}
public int nextInt() {...}
public int nextInt(int n) {...}
public long nextLong() {...}
public boolean nextBoolean() {...}
public float nextFloat() {...}
public double nextDouble() {...}
private double nextNextGaussian;
private boolean haveNextNextGaussian = false;
synchronized public double nextGaussian() {...}

} 
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Constructors
• Constructors are special methods that get called with the 
new operator

Mobile m12 = new Mobile(10);

• The name of a constructor is the same as the name of the 
class

• What does it do?

• What if there is no constructor?
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Multiple Constructors
• There are often several constructors for any one class
• They all have the same name (the name of the class)
• They must differ in their parameter lists

» Mobile m10 = new Mobile();

» Mobile m12 = new Mobile(10);

• Return value?
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Methods

• The method header declares the type and 
name for each required parameter

/**
* Add a simple weight right at the attachment 
point.

* @param f a weight or lifting force
*/
public void addWeight(double f) {

moby.add(new WeightAttachment(f));
}
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Examples from class java.lang.String
• toLowerCase()

Converts all of the characters in this String to lower case 
using the rules of the default locale

• startsWith(String prefix)

Tests if this string starts with the specified prefix

• substring(int beginIndex,  int
endIndex)

Returns a new string that is a substring of this string
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Method calls
• Recall: substring(int beginIndex, int endIndex)

int beginIndex = 1;

String myName = “Lex Luther”;

String twoChar = myName.substring(beginIndex, beginIndex+2);

» twoChar is now a reference to a String containing “ex”

• If necessary and possible, the compiler will convert the 
value provided by the caller to the type of the value that 
was requested by the method in the formal parameter list
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Returning a value to the caller
/** 

* Get current X value.

* @return the X coordinate

*/

public int getX() { 

return x;

}

• “Accessor” methods
public int getX()

public int getWidth()
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Method Overloading

• Classes may declare multiple methods with the same 
name, provided the signature is different

• The signature of a method is:

• For example, System.out.println is overloaded 
for many types

println(char c);

println(double d);

println(String s);
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Abstract the behavior of classes
• We sometimes want to use one or more methods that 

are available for various objects, even though they are 
not all of the same class

• Consider the attachments to a mobile
» we want to know is it balanced, what's the weight, and what 

are the x and y torque values

• So we can promise that:
» We don’t know exactly what kind of an attachment it is, but 

we do know that it can tell us if it is balanced, what the 
weight and torque values are
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Interface

• You can say that any class that claims to be an 
Attachment will guarantee that it has methods 
for all the things that any Attachment must do

• The definition of the interface shows exactly 
what the methods must look like

public interface Attachment {
/**

* Check to see if this Attachment is balanced.

* An Attachment is balanced if all its constituent parts are balanced.

* @return true if the Attachment is balanced, false if not.

*/

public boolean isBalanced();

/**

* Return the total weight of this Attachment.

* @return the total weight of this Attachment
*/

public double getWeight();

/**

* Get the x-torque.  This is the torque applied around the x-axis by

* the Attachment to the Mobile at the attachment point.

* @return the torque around the x-axis.

*/

public double getXTorque();

/**

* Get the y-torque.  This is the torque applied around the y-axis by

* the Attachment to the Mobile at the attachment point.

* @return the torque around the y-axis.

*/

public double getYTorque();

}
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Using an interface in a class definition

• Each of the classes that wants to be considered 
an Attachment must say so at the very 
beginning of the class definition

public class Branch implements Attachment {
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Using Attachment Interface

public class Mobile {
...
Attachment attachments[] = ...;

public double getWeight() {
double w = 0;
for (int ii=0;ii<attachments.length;ii++) {

Attachment a = attachments[ii];
w += a.getWeight();

}
return w;

}
...

}
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Cast to Attachment
• Tell the compiler that the ArrayList contains objects 

that are Attachments
public class Mobile {

...
ArrayList myList = ...;

public double getWeight() {
double w = 0;
Iterator iter = myList.iterator();
while (iter.hasNext()) {

Attachment a = (Attachment)iter.next();
w += a.getWeight();

}
return w;

}
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Relationships between classes

• Classes can be related via composition
» This is often referred to as the “has-a” relationship

» eg, a Mobile has a list in an ArrayList of 
Attachments

• Classes can also be related via inheritance
» This is often referred to as the “is-a” relationship

» eg, an ArrayList is an AbstractList
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Mobile has a list of Attachments

Mobile
List moby

ArrayList

int size

item 0

item 1

item 2

etc

WeightAttachment

Branch

Branch

ArrayList is a AbstractList

is a

is a

is a
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Why use inheritance?
• Code simplification

» Avoid doing the same operation in two places

» Avoid storing “matching state” in two places

• Code simplification
» We can deal with objects based on their common 

behavior, and don’t need to have special cases for 
each subtype

• Code simplification
» Lots of elegant code has already been written - use 

it, don’t try to rewrite everything from scratch
22

Reduce the need for duplicated code

• Suppose we have two Attachments:
» Branch has getXTorque() method

» LiftingBranch has getXTorque() method

» and they are implemented exactly the same way

• We can implement this method once in a base 
class, and then extend it and add or replace 
implementations of other methods as we like
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Branch class
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Syntax of inheritance

• Specify inheritance relationship using extends

public class Branch implements Attachment {
…

public double getXTorque() {
return getWeight()*length*Math.sin(theta);

}
}

public class LiftingBranch extends Branch { …
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LiftingBranch : subclass of Branch
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Using the superclass constructor
• Constructor of the superclass is called to do much 

(or all) of the initialization for the subclass

public class Branch implements Attachment {
public Branch(double angle, double len, Mobile m) {

theta = angle;
length = len;
structure = m;

}
...

public class LiftingBranch extends Branch {
public LiftingBranch(double angle, double len, Mobile mA,Mobile mB) {

super(angle,len,mA);
this.lift = mB;

}
...
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this() and super() as constructors

• You can use an alias to call another constructor
» super(...) to call a superclass constructor

» this(…) to call another constructor from same class

• The call to the other constructor must be the first 
line of the constructor
» If neither this() nor super() is the first line in a 

constructor, a call to super() is inserted automatically by 
the compiler.  This call takes no arguments.  If the 
superclass has no constructor that takes no arguments, 
the class will not compile.
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Overriding methods
• Overriding methods is how a subclass refines or 

extends the behavior of a superclass method

• Manager and Executive classes extend Employee
» Employee: 

double pay() {return hours*rate + overtime*(rate+5.00);} 

• How do we specify different behavior for 
Managers and Executives?
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Overriding methods

public class Employee {

// other stuff

public float pay() {

return hours*rate + overtime*(rate+5.00);

}

}

public class Manager extends Employee {

// other stuff

public float pay() {

return hours*rate;

}

}
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instanceof

• Used to test an object for class membership

• Tests for a relationship anywhere along the 
hierarchy
» Also tests whether an object’s class implements an 

interface

• What class must <classname> represent for the 
following expression to be true always?

if (v instanceof <classname>) { … }

if (bunch.get(i) instanceof Branch) {…}


