
A-1

1

Topic #6:
Intro to Java

CSE 413, Autumn 2004

Programming Languages

http://www.cs.washington.edu/education/courses/413/04au/

2

Readings and References

• Reading
» Chapter 15, Concepts of Programming Languages, by

Sebesta

• Other References
» "Object-Oriented Programming Concepts", Java tutorial

http://java.sun.com/docs/books/tutorial/java/concepts/index.html

» "Language Basics", Java tutorial
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/index.html

3

What is Java?

• An object-oriented programming language
» source code

• Application Programming Interfaces (APIs)
» extensive class libraries

• A virtual machine
» runs programs that were written in the source

language and compiled to binary bytecodes

4

Java vs. Other Languages
• Java syntax is very much like C syntax

• Java does not explicitly support pointers or any
other direct access to memory

• Java is automatically garbage-collected

• Java is interpreted.

• Java is dynamically linked, with run-time
polymorphism

5

Java Application Java Applet

Java Compiler Java Debugger

Other Tools

Java Virtual
Machine

rmi

awt

net

text

util

bean

sql

lang

JRE

Java
Runtime

Environment

JDK

Operating Systems WXP, Solaris, Linux, etc.

Java Developers Kit (JDK)

6

Tools in the JDK

• javac - Java compiler

• java - Java interpreter

• jdb - Java debugger

• appletviewer - viewer
for Java applets

• javap - Java bytecode
disassembler

• javadoc - Java
documentation
generator

• Documentation for the
JDK can be explored
with your Web browser

A-2

7

Installing the JDK

• Instructions on the class software page

• JDK
» tools

» library sources

• Java API documentation

• Learning and reference materials
» Java tutorial

http://java.sun.com/docs/books/tutorial/

» take the time to set up one-click shortcuts now

8

Our Environment

compiler
javac.exe

class definition
source file: Dog.java

class definition
binary file: Dog.class

java virtual machine (JVM)
java.exe

Development Environment
jEdit, Eclipse, command line

text editor
jEdit, Eclipse, notepad.exe, …

output

you and me

9

Compile It

compiler
javac.exe

class definition
source file: Dog.java

class definition
binary file: Dog.class

java virtual machine (JVM)
java.exe

Development Environment
jEdit, Eclipse, command line

text editor
jEdit, Eclipse, notepad.exe, …

output

you and me

10

Objects and Classes

• A class is a definition of a type of thing
» The class definition is where we find a description of how

things of this type behave.

• An object is a particular thing
» There can be many objects of a given class. An object is

an instance of a class.

» All objects of a given class exhibit the same behavior.

11

Houses are instances of blueprints

class

objects

http://online.caup.washington.edu/programs/uwbasic/go/projects/aih/projects/index.htm

12

Instantiate - create an object

• Once we create a class definition using an editor and the
compiler, we can instantiate it with the “new” operator
» Oval moon = new Oval(100,100,20,20,Color.gray,true);

• We can then manipulate these objects to do the work that
needs to be done

• Note that many classes have already been defined for us

A-3

13

Class Concepts

• Class definitions have two important
components:
» state

» behavior or interface

14

Class Concepts: State

• State is a complete description of all the things
that make a class a class.

• For example, part of the state of class
Employee is the Employee’s UWNetID
» All objects of class Employee will have a

UWNetID specified.

• State is stored in data members
» also known as fields, member variables, instance

variables, properties

15

Class Concepts: Behavior

• Behavior of a class defines how other classes
may interact with it. It indicates the
capabilities of the class to “do” things.

• Behavior is defined in methods
» Methods look like functions in C, methods in C++,

subroutines in Fortran, procedures in Scheme, etc

16

Structure of Source File

Three components to a Java
source file, in order

package package.name;

import java.io.*;
import java.util.ArrayList;

public class MyClass {

// members go here

}

Package identifier

import statements

Class definition

17

Example class
public class Dog {
public Dog(double rate) {

consumptionRate = rate;

weight = 20;

}
public void bark() { ... }

public double getRate() { ... }

public void eat(double pounds) { ... }

private double consumptionRate;

private double weight;

}

18

Basic Libraries Sample Members

• java.lang - Object class, numbers, strings,
System, Exceptions, Threads and more

• java.io - streams, readers, writer, files

• java.util - Dates, Locales, data structures, zip

• java.net - Sockets, URLs, datagrams,
InetAddresses, connections

• java.awt, javax.swing - Graphics, Layout,
Event, User Interaction

A-4

19

Documenting Source Code

• // - single line comment
• /* multiple line comment */

• /** javadoc style comment */

• javadoc utility provides automatic generation
of documention from code comments

20

Javadoc Tags

• The javadoc utility supports several “tag”
fields in javadoc comments
» @param -- passed parameter description

» @return -- returned value description

» @throws -- error indicators

• javadoc formats these and includes them in the
generated documentation

21

Java Primitive Data Types

boolean true or false

char ‘\u0000’ to ‘\uFFFF’ 16 bits(ISO Unicode)

byte -128 to +127

short -32,768 to +32,767

int -2,147,483,648 to +2,147,483,647

long -9,223,372,036,854,775,808 to

+ 9,223,372,036,854,775,807

22

float -3.40292347E+38 to
+3.40292347E+38

(IEEE 754 floating point)

double -1.79769313486231570E+308 to
+1.79769313486231570E+308

(IEEE 754 floating point)

Java Primitive Data Types

23

Object Wrappers for Primitive Types

Each primitive data type
has an object “wrapper”
with related functionality

• Boolean

• Byte

• Character

• Short

• Integer

• Long

• Float

• Double

24

Integer.intValue()
Integer i = new Integer(5);
int j = i.intValue();

There are also useful general purpose functions
defined in the wrapper classes

static int parseInt(String s, int radix)
static String toString(int i, int radix)
etc

Accessing Values In Wrappers

A-5

25

Sequence and Grouping

//Simple sequence

statement1;
statement2;

//Grouped -- can replace a single
//statement anywhere

{
statement1;
statement2;

}

26

Identifiers

• Variable, method, class, or label

• Keywords and reserved words not allowed

• Must begin with a letter, dollar($), or underscore(_)

• Subsequent letters, $, _, or digits
» foobar // valid

» 3_node // invalid

27

for example

• a counting loop implemented with for

for (int i=0; i<20; i++) {
testB.grow();

}

can declare variable here
or use existing variable

check for termination
i runs from 0 to 19

update loop control
shorthand for i=i+1;

Looper.java

28

limited life of a loop control variable

• The scope of a local variable declared in the
ForInit part of a for statement includes all of
the following:
» Its own initializer

» Any further declarators to the right in the ForInit
part of the for statement

» The Expression and ForUpdate parts of the for
statement

» The contained Statement
from Java Language Specification, section 6.3

29

Short-Circuit Operators

• With && and ||, only as much of the logical
expression as needed is evaluated

• Example:
int i=1;

if (false && (++i == 2))

System.out.println(i);

if (true || (++i == 2))

System.out.println(i);

• Don't use increment operator in places where it
might not get executed (as in this example)

30

boolean expressions and variables

• If you find yourself doing something like this
if (pageNumber == lastPage) {

allDone = true;

} else {

allDone = false;

}

• there is an easier way
allDone = (pageNumber == lastPage);

A-6

31

conditional operator (3 operands)

• If you find yourself doing something like this
if (score < 0) {

color = Color.red;

} else {

color = Color.black;

}

• there is an easier way
color = (score < 0) ? Color.red : Color.black;

32

APPENDIX

33

Packages

• A way to group related classes

• A key part of Java’s encapsulation mechanism

• Class is permanently associated with its package

• Period (.) separated name generally mirrors
directory structure where classes are stored

• “Default” package is the current directory

• Classes without a package identifier are in the
default package

34

import - help the compiler find classes
• A class’ full name includes its package.

» java.util.ArrayList or java.io.FileReader

• Usually it is more convenient simply to use the
class name without the package

• The import statement allows this shortcutting

• Classes can be imported individually, or all classes
in a package can be imported

• java.lang.* is imported automatically by the
compiler

• is not like #include in C/C++

35

Java Operators are Much Like C/C++
• Arithmetic +, -, *, /, %

• Preincrement and postincrement (++, --)

• Assignment (=, +=, -=, etc.)

• Relational comparison operators (==,<,>,<=,>=)

• Boolean logical operators (!, &&, ||)

• Bitwise operators (~,&,|,^)

• Shift operators (>>, <<,>>>)

• No programmer-defined operator overloading
(java does overload + for string concatenation)

36

Integer division and remainder

• Recall this
» value = quotient * divisor + remainder

• The division operator is /
int x = 7;

int y = x / 2;

» y will have the value 3 at this point

• The remainder operator is %
int rem = x % 2;

» rem will have the value 1 at this point since 7-(3*2)
is equal to 1

A-7

37

increment and decrement
• ++ and -- operators allow you to concisely indicate that

you want to use and increment or decrement a variable's
value

• pre-increment : ++i
» the value of i is incremented before being used in the expression

• post-increment: i++
» the value of i is incremented after being used in the expression

• in a statement by itself, makes no difference
» there is no expression of interest, just increment the value

38

Assignment Operators

• Sets a value or expression to a new value

• Simple uses
int a = 10;

• Compound +=, *= in form of x op= y, is
short hand for x = x op y
a += 10;

a = a + 10; // equivalent

39

Relational operators

• Relational operators: boolean result

< less than

> greater than

<= less than or equal

>= greater than or equal

== equivalence

40

Boolean Logical Operators

• Used to group, join and change boolean results
of relationals
&& logical AND

|| logical OR

! logical NOT

41

Bitwise Operators

• Integers types only, produce int or long
~ bitwise not (reverses bits)

& bitwise and

| bitwise or

^ bitwise exclusive or

char aChar = 'c'; // 99 = 0x63 = 110 0011
int mask = 0xF;
int z = (aChar & mask);

42

Shift Operators

• Integers types only, produce int or long
<< (left shift): shifts bits to left

>> (signed right shift): shifts bits to right, keeps the
sign (+ value fills with zeros; - value fills with
ones)

>>> (unsigned right shift): shifts bits to right, fills
with zeros regardless of sign

A-8

43

Java Keywords

abstract boolean break byte case

catch char class continue default
do double else extends false

final finally float for if

implements import instanceof int interface
long native new null package

private protected public return short

static super switch synchronized this
throw throws transient true try

void volatile while

Keywords that are reserved but not used in Java

const goto

44

Literals - boolean, char, String

• true or false
» boolean isBig = true;

» boolean isLittle = false;

• character in an enclosing single quotes
» char c = 'w';

• Unicode
» char c1 = '\u4567';

• String
» String s = "hi there";

45

Literals - Integer types

• Expressed in decimal, octal, or hexadecimal
» 28 = decimal

» 034 = octal

» 0x1c = hexadecimal

• Default is 32 bits (ie, int)
» to get a long literal specify a suffix of L: 4555L

46

Literals - floating-point

• floating-point numeric value

• decimal point 16.55

• scientific notation, E or e: 4.33E+44

• 32-bit float, suffix F or f : 1.82F

• 64-bit double, suffix D or d: 12345d

• Default without F or D is 64-bit double

47

The if statement

if (condition) {

this block is executed if the condition is true
} else {

this block is executed if the condition is false
}

• The condition is a logical expression that is
evaluated to be true or false, depending on
the values in the expression and the operators

48

switch statement

switch (integral type) {

case value1 : {
statement1;
break; //Break out of switch

}
case value2 : {

statement2;
break;

}
default : {

statement3;
}

}

there are lots of limitations and potential bugs in using this, so be careful!

A-9

49

The for loop

• A counting loop is usually implemented with for
» The for statement is defined in section 14.13 of the

Java Language Specification

for (i=0; i < count; i++) {
System.out.println("i : "+i);

}

initialize check for termination update loop control

one or more statements in the loop body

50

The while loop
• condition loop is usually implemented with while

» The while statement is defined in section 14.11 of
the Java Language Specification

Note: reaching a limit by counting is satisfying a condition.
for loops can be rewritten as while loops, and vice versa

periods = 0;
toDate = base;
while (toDate < goal) {

toDate = toDate+(toDate*rate);
periods = periods+1;

}

initialize
check for termination

one or more statements in the loop body

51

while example

• a condition loop implemented with while

boolean atEndOfFile = false;
while (!atEndOfFile) {

read another line and set atEndOfFile if appropriate
process the new line if needed

}

any variable can be part
of the controlling condition

check for termination
indeterminate update loop control

operation of the loop
causes changes that
will eventually cause

loop to terminate

Looper.java

52

body of loop may not execute at all

• Notice that depending on the values of the control
variables, it is quite possible that the body of the
loop will not execute at all in both for and while

goal = 75;
...
periods = 0;
toDate = 100;
while (toDate < goal) {

toDate += toDate*rate;
periods++;

}

check for termination
toDate is already greater than goal,

and so the entire loop is skipped

53

Early terminaton of the loop statement

• A loop is often used to look at all the elements of
a list one after another
» all the Animals in a PetSet

» all the Shapes in a Car

• Sometimes we want to
» exit the loop statement early if we find some

particular element or condition while we are looping

» ie, get out of the loop statement (for, while) entirely

54

break - jump to loop exit

public void snack() {
for (int i=0; i<theBunch.size(); i++) {
if (remainingFood <= 0) {
System.out.println("No food left, so no more snacks.");
break;

}
Animal pet = (Animal)theBunch.get(i);
double s = Math.min(remainingFood,pet.getMealSize());
pet.eat(s);
remainingFood -= s;

}
// the break statement takes us here, out of the loop entirely

}

A-10

55

Early cycling of the loop

• Sometimes we want to
» Stop processing the item we are looking at right

now and go on to the next one

• The loop statement (for, while) is still the
controlling structure, but we just want to go to
the next iteration of the loop

56

continue - jump to loop end

public void dine() {
for (int i=0; i<theBunch.size(); i++) {
Animal pet = (Animal)theBunch.get(i);
double s = 2*pet.getMealSize();
if (remainingFood < s) {
System.out.println("Not enough food for "+pet+
"'s dinner, so we'll skip to next animal.");

continue;
}
pet.eat(s);
remainingFood -= s;
// continue takes us here, the end of this loop

}
}

57

Positional Notation

• Each column in a number represents an
additional power of the base number

• in base ten
» 1=1*100, 30=3*101, 200=2*102

• in base sixteen
» 1=1*160, 30=3*161,200=2*162

» we use A,B,C,D,E,F to represent the numbers
between 916 and 1016

58

Binary, Hex, and Decimal

2
0
=
1
1
0

2
1
=
2
1
0

2
2
=
4
1
0

2
3
=
8
1
0

2
4
=
1
6
1
0

2
5
=
3
2
1
0

2
6
=
6
4
1
0

2
7
=
1
2
8
1
0

2
8
=
2
5
6
1
0

Hex16 Decimal10

1 1 3 3

1 0 0 1 9 9

1 0 1 0 A 10

1 1 1 1 F 15

0 0 0 0 10 161

1 1 1 1 1F 311

1 1 1 1 7F 127111

1 1 1 1 FF 2551111

59

Binary, Hex, and Decimal

1
6
0
=
1
1
0

1
6
1
=
1
6
1
0

1
6
2
=
2
5
6
1
0

1
6
3
=
4
0
9
6
1
0

1
6
4
=
6
5
5
3
6
1
0

Decimal10

3 3

9 9

A 10

F 15

1 0 16

1 F 31

7 F 127

F F 255

Binary2

11

1001

1010

1111

1 0000

1 1111

111 1111

1111 1111

60

Binary, Hex, and Decimal

1
0
0
=
1
1
0

1
0
1
=
1
0
1
0

1
0
2
=
1
0
0
1
0

1
0
3
=
1
0
0
0
1
0

3

9

0

5

1 6

3 1

2 7

5 5

Binary2

11

1001

1010

1111

1 0000

1 1111

111 1111

1111 1111

3

9

A

F

10

1F

7F

FF

Hex16

1

1

1

2

