Topic #5:
Hierarchical Structures

CSE 413, Autumn 2004
Programming Languages

http://www.cs.washington.edu/education/courses'413/04au/

Review: sumtheitemsinalist

JAN
EXRNVEIN
E1 AV

(define (add-items m)
(if (null? m) n
0
(+ (car m) (add-items (cdr m)))))

(add-items (list 2 5 4))

Review: multiply each list element by 2

(double-all (list 4 0 -3)) L
4 [14

L] [

(define (double-all m)
(if (null? m) 3
0
(cons (* 2 (car m)) (double-all (cdr m)))))

(cons 8 (cons 0 (cons -6 '())))

Exercise #1: Write function to find the maximum
element of alist. Assumelist is non-empty.

(define (find-max m)

Exercise #2: Write a function to concatenate two lists.
Example: (concat (list 12 3) (list789)) > (123789)

(define (concat x y)

Exercise #3: Write afunction that removes all the
negative numbers from alist
(remove-neg (list 1-78-9)) > (18)

(define (remove-neg m)

A-1

Exercise #4: Write a tail-recursive solution to exercise
#1 (or non-tail-recursive if your solution already was)

(define (concat x y)

References

e Section 2.2.2, 2.3.1, Srructure and Interpretation of
Computer Programs

» Sections4.1.2, 6.1, 6.3.3, Revised® Report on the
Algorithmic Language Scheme (R5RS)

Printing pairs and lists

(cons 3 4) => (3 . 4) (cons 3 (cons 4 '())) => (3 4)
L [
o A%
[4]

List structure

(list 4 6) => (4 6)
(L]

(4] (list 2 (list 4 6)) => (2 (4 6))

@ @}ﬂi
(list 2 4 6) => (2 4 6) /
L
e & LA
3 O &

@ 1A
(¢]

List structure and cons

(list 2 (list 4 6)) =>

(cons 2 (list 4 6)) =>

Using liststo build abstract data types

» Weknow how lists are constructed and we know
how to represent them

» Wewant to build abstract data structures
» the use of listsis actually an implementation detail

 For example, atree structure can bebuilt in
many different ways in many different languages

A-2

Expression trees

In Scheme, we often use constructors and
accessors to abstract away the underlying
representation of data (which is usually alist)

For exampl e, consider arithmetic expression trees
A binary expression is

» an operator: +, -, *, / and two operands
An operand is

» anumber or another expression

Expression tree example

infix notation (1 + (2 * (3 -5)))

Schemeprefix notation (+ 1 (* 2 (- 3 5)))

expression tree /

Represent expression with alist

* For this example, we are restricting the type of
expression somewhat
» Operatorsin thetree are all binary
» All of the leaves (operands) are numbers
» Each nodeis represented by a 3-element list
» (operator |eft-operand right-operand)
* Recall that the operands can be
» numbers (explicit values)
» other expressions (lists)

Expressions as trees, trees aslists

logical expression tree
(1+(2%(3-5)))

our data structure

(list + 1 (list * 2 (list - 3 5))) @,

Constructors and accessors

(define (make-exp op left right)
(list op left right))

(define (operator exp)
(define a (make-exp + 1 2))
(define (left exp)
1]

/®\ EfinE

(define (right exp) 1 2 LU

Evaluator

(eval-expr (make-exp + 1 2))

(define (eval-expr exp)
(if (not (list? exp))
exp
((operator exp)
(eval-expr (left exp))
(eval-expr (right exp)))))

A-3

Why quote?

« Scheme evaluates the symbols/lists that we give it
» numbers evaluate to themselves
» symbols evaluate to their current value
» listsare evaluated as expressions defining procedure calls on
asets of actual arguments
* We sometimes need a way to say "use this symbol or
list asitis, don’t evaluate it"
¢ Specia form quote

>(define a 1)

>a > 1

>(quote a)

> a

Quote examples

(define a 1)
a
(quote a)

non
v

v

(define b (+ a a))
b =>

(define c (quote (+ a b)))
c -
(car c)

(cadr c)
(caddr c)

>

>

>

guote can be abbreviated: '

'a

v

a

'(+ a b) => (+ a b)

0 => ()

(null? '()) => #t

(1 (2 3) 4) => (1 (2 3) 4)
(@ (b (e))) => (a (b (c)))
(car '(1 (2 3) 4)) =>1

(cdr '(1 (2 3) 4)) => ((2 3) 4)

Building lists with symbols

» What would the interpreter print in response to
evaluating each of the following expressions?

(list 'a 'b)

(cons 'a (list 'b))
(cons 'a (cons 'b '()))
(cons 'a ' (b))

'(a b)

Building lists with symbols

» What would the interpreter print in response to
evaluating each of the following expressions?

(cons '(a) '(b))

(list '(a) ' (b))

Comparing items

 Scheme provides several different means of
comparing objects
» Do two numbers have the same value?
e (= ab)
» Are two objects the same object in memory?
e (eg? a b)
» Do two objects have the same value?
e (eqv? a b)

» Do the corresponding elements have the same values?
¢ (equal? list-a list-b)

(member item s)

; find an item of any kind in a list s
; return the sublist that starts with the item
; or return #£

(define (member item s)
(cond
((null? s) #£)
((equal? item (car s)) s)
(else (member item (cdr s)))))

(member 'a '(c d a))

(member '(1 3) '(1 (1 3) 3))
(member 'b '(a (b) c))
(member '(b) '(a (b) c))

v

>
>
>

Recall: Expression tree example

infix notation (1 + (2 * (3 -5)))

Schemeprefix notation (+ 1 (* 2 (- 3 5)))

expression tree /

Represent expression with alist

» Each nodeis represented by a 3-element list
» (operator |eft-operand right-operand)
» Operands can be
» numbers (explicit values)
» other expressions (lists)
* In previous implementation, operators were the
actual procedures
» Thistime, we will use symbols throughout

Expressions as trees, trees aslists

logical expression tree
(1+(2%(3-5)))

our data structure
1 (2 (-3 9))) @,

Constructor and accessor functions

(define (make-exp op left right) (make-exp '+ 1 2)

(list op left right))

(define (operator exp)
(car exp))

(define (left exp)
(cadr exp))

(define (right exp)
(caddr exp))

eval-op and eval -expr

(define (eval-op op)
(cond
((eqv? op '") expt)
(else (eval op))))

(eval-expr '(+ 1 2))

(define (eval-expr exp)
(if (not (list? exp))
exp
((eval-op (operator exp))
(eval-expr (left exp))

(eval-expr (right exp)))))

Traversing abinary tree

» Recall the definitions of traversal

» pre-order
« thisnode, left branch, right branch %
» in-order 1
« left branch, this node, right branch 2‘/
» post-order
« left branch, right branch, this node 20

(1+(2*(3-5)))

Output expression in post-fix order

(define (post-order exp)
(if (not (pair? exp))
(list exp)
(append
(post-order (left exp))
(post-order (right exp))
(list (operator exp)))))

(define £ '(+ 1 (* 2 (- 3 5))))
(post-order f)
(1235 - * 4)

