
A-1

1

Topic #5:
Hierarchical Structures

CSE 413, Autumn 2004

Programming Languages

http://www.cs.washington.edu/education/courses/413/04au/

2

Review: sum the items in a list

(add-items (list 2 5 4))

2

5

4
(define (add-items m)
(if (null? m)

0
(+ (car m) (add-items (cdr m)))))

3

Review: multiply each list element by 2

(define (double-all m)
(if (null? m)

'()
(cons (* 2 (car m)) (double-all (cdr m)))))

(double-all (list 4 0 -3))

(cons 8 (cons 0 (cons -6 '())))
8

0

-6

4

0

-3

Exercise #1: Write function to find the maximum
element of a list. Assume list is non-empty.

(define (find-max m)

Exercise #2: Write a function to concatenate two lists.
Example: (concat (list 1 2 3) (list 7 8 9)) � (1 2 3 7 8 9)

(define (concat x y)

Exercise #3: Write a function that removes all the
negative numbers from a list
(remove-neg (list 1 -7 8 -9)) � (1 8)

(define (remove-neg m)

A-2

Exercise #4: Write a tail-recursive solution to exercise
#1 (or non-tail-recursive if your solution already was)

(define (concat x y)

8

References

• Section 2.2.2, 2.3.1, Structure and Interpretation of
Computer Programs

• Sections 4.1.2, 6.1, 6.3.3, Revised5 Report on the
Algorithmic Language Scheme (R5RS)

9

Printing pairs and lists

(cons 3 4) => (3 . 4)

3 4

(cons 3 (cons 4 '())) => (3 4)

3

4

10

List structure

4

6

(list 4 6) => (4 6)

(list 2 4 6) => (2 4 6)

2

4

6

(list 2 (list 4 6)) => (2 (4 6))

4

6

2

11

List structure and cons

(cons 2 (list 4 6)) =>

(list 2 (list 4 6)) =>

12

Using lists to build abstract data types

• We know how lists are constructed and we know
how to represent them

• We want to build abstract data structures
» the use of lists is actually an implementation detail

• For example, a tree structure can be built in
many different ways in many different languages

A-3

13

Expression trees

• In Scheme, we often use constructors and
accessors to abstract away the underlying
representation of data (which is usually a list)

• For example, consider arithmetic expression trees

• A binary expression is
» an operator: +, -, *, / and two operands

• An operand is
» a number or another expression

14

Expression tree example

(1 + (2 * (3 - 5)))infix notation

(+ 1 (* 2 (- 3 5)))Scheme prefix notation

+

1 *

2 -

3 5

expression tree

15

Represent expression with a list

• For this example, we are restricting the type of
expression somewhat
» Operators in the tree are all binary

» All of the leaves (operands) are numbers

• Each node is represented by a 3-element list
» (operator left-operand right-operand)

• Recall that the operands can be
» numbers (explicit values)

» other expressions (lists)
16

Expressions as trees, trees as lists
+

1 *

2 -

3 5

logical expression tree

(list + 1 (list * 2 (list - 3 5)))

+

our data structure

(1+(2*(3-5)))

1

*

2

-

3

5

17

Constructors and accessors

(define (make-exp op left right)

(list op left right))

(define (operator exp)

(define (left exp)

(define (right exp)

(define a (make-exp + 1 2))

+

1 2

+

1

2

18

Evaluator

(define (eval-expr exp)

(if (not (list? exp))

exp

((operator exp)

(eval-expr (left exp))

(eval-expr (right exp)))))

+

1

2

(eval-expr (make-exp + 1 2))

A-4

19

Why quote?

• Scheme evaluates the symbols/lists that we give it
» numbers evaluate to themselves

» symbols evaluate to their current value

» lists are evaluated as expressions defining procedure calls on
a sets of actual arguments

• We sometimes need a way to say "use this symbol or
list as it is, don’t evaluate it"

• Special form quote
>(define a 1)

>a => 1

>(quote a) => a

20

Quote examples

(define a 1)

a =>

(quote a) =>

(define b (+ a a))

b =>

(define c (quote (+ a b)))

c =>

(car c) =>

(cadr c) =>

(caddr c) =>

21

quote can be abbreviated: '

'a => a

'(+ a b) => (+ a b)

'() => ()

(null? '()) => #t

'(1 (2 3) 4) => (1 (2 3) 4)

'(a (b (c))) => (a (b (c)))

(car '(1 (2 3) 4)) => 1

(cdr '(1 (2 3) 4)) => ((2 3) 4)

22

Building lists with symbols

• What would the interpreter print in response to
evaluating each of the following expressions?

(list 'a 'b)

(cons 'a (list 'b))

(cons 'a (cons 'b '()))

(cons 'a '(b))

'(a b)

23

Building lists with symbols

• What would the interpreter print in response to
evaluating each of the following expressions?

(cons '(a) '(b))

(list '(a) '(b))

24

Comparing items

• Scheme provides several different means of
comparing objects
» Do two numbers have the same value?

• (= a b)

» Are two objects the same object in memory?
• (eq? a b)

» Do two objects have the same value?
• (eqv? a b)

» Do the corresponding elements have the same values?
• (equal? list-a list-b)

A-5

25

(member item s)

; find an item of any kind in a list s

; return the sublist that starts with the item

; or return #f

(define (member item s)

(cond

((null? s) #f)

((equal? item (car s)) s)

(else (member item (cdr s)))))

(member 'a '(c d a)) =>
(member '(1 3) '(1 (1 3) 3)) =>
(member 'b '(a (b) c)) =>
(member '(b) '(a (b) c)) =>

26

Recall: Expression tree example

(1 + (2 * (3 - 5)))infix notation

(+ 1 (* 2 (- 3 5)))Scheme prefix notation

+

1 *

2 -

3 5

expression tree

27

Represent expression with a list

• Each node is represented by a 3-element list
» (operator left-operand right-operand)

• Operands can be
» numbers (explicit values)

» other expressions (lists)

• In previous implementation, operators were the
actual procedures
» This time, we will use symbols throughout

28

Expressions as trees, trees as lists
+

1 *

2 -

3 5

logical expression tree

'(+ 1 (* 2 (- 3 5)))

+

our data structure

(1+(2*(3-5)))

1

*

2

-

3

5

29

Constructor and accessor functions

(define (make-exp op left right)
(list op left right))

(define (operator exp)
(car exp))

(define (left exp)
(cadr exp))

(define (right exp)
(caddr exp))

+

1

2

(make-exp '+ 1 2)

30

eval-op and eval-expr

(define (eval-op op)

(cond

((eqv? op '^) expt)

(else (eval op))))

(define (eval-expr exp)

(if (not (list? exp))

exp

((eval-op (operator exp))

(eval-expr (left exp))

(eval-expr (right exp)))))

+

1

2

(eval-expr '(+ 1 2))

A-6

31

Traversing a binary tree

• Recall the definitions of traversal
» pre-order

• this node, left branch, right branch

» in-order
• left branch, this node, right branch

» post-order
• left branch, right branch, this node

+

1 *

2 -

3 5

(1+(2*(3-5)))

32

Output expression in post-fix order

(define (post-order exp)

(if (not (pair? exp))

(list exp)

(append

(post-order (left exp))

(post-order (right exp))

(list (operator exp)))))

(define f '(+ 1 (* 2 (- 3 5))))

(post-order f)

(1 2 3 5 - * +)

