Topic #4:
Pairs & Lists

CSE 413, Autumn 2004
Programming Languages

http://www.cs.washington.edu/education/courses'413/04au/

References

* Section 15.5, Concepts of Programming
Languages

* Sections 6.3.2, Revised® Report on the
Algorithmic Language Scheme (R5RS)

» For more:

» Sections 2-2.2.1, Structure and Interpretation of
Computer Programs

Procedura abstractions

» So far, we have talked about primitive data
elements and done various levels of
abstraction using procedures only

» Thisis akey capability in being able to recognize
and implement common behaviors

» Theability to combine data €l ements will
further extend our ability to model theworld

Compound data

* Inorder to build compound structures we need
away to combine e ements and refer to them
asasingleblob

» Wecan writea lambda expression that
combines one or more expressions

» Wecan writea cons expression that ties two
data € ements together

(cons a b)

» Takes a and b as args, returns a compound
data object that contains a and b as its parts

» We can extract the two parts with accessor
functions car and cdr ("could-er")

(define a (cons 1 2))

car and cdr
(define a (cons 1 2)) a un
(car a)
(cdr a) n
(car (cons 3 4)) nn
(cdr (cons 3 4)) n




car and cdr

(define a (cons 1 2))

(define b (cons a 3))

(car (car b))

(cdr (car b))
(cdr b) a ln

(car (cdr c))

(define ¢ (cons (cons 1 2) (cons 3 4)))

(car (car c))
(cdr (car c))
(car (cdr c))
(cdr (cdr c))

(cadr c)

* We can abbreviate the repeated use of car and cdr

(define ¢ (cons (cons 1 2) (cons 3 4)))

(caar c)
(cdar c)
(cadr c)
(cddr c)

pair? predicate

* (pair?z) istrueif zisapair

(define ¢ (cons (cons 1 2) (cons 3 4)))

(pair? c)

(pair? (car c))
(pair? (cdr c))
(pair? (caar c))
(pair? (cdar c))

nil

* if thereis no element present for the car or cdr
branch of a pair, we indicate that with the
value nil

» nil (or null) represents the empty list '()

o (null?2) istrueif zisnil

(define d (cons 1 '()))

a —, |/
(ar

(null? (car d))
(null? (cdr 4))

What do we really know about pairs?

» An Application Programming Interface (API)
» cons - constructor
» car, cdr - accessor functions
» Wemay think we know how they are stored
» box-and-pointer drawings
» pointers to pointer blocks ...
 Butif we can stay at the API levd, the
separation between layers of implementation
can stay clean which isa"good thing"




Can we implement cong/car/cdr?

« |f we focus on the behaviors that are defined
what do we actually need to do?

e (cons a b)

e (car something)

e (cdr something)

something

» Wetend to think of the something returned by
cons as astructured data variable of some sort

» However, the only actual requirement on
something is that we can recover a and b from it
using procedures named car and cdr

» How about we use a procedure definition for
something ...

Procedural representation of pairs

definition

(define (cons x y)
(lambda (m) (m x y)))
usage

(define a (cons 1 2))
(car a)
(cdr a)

(define (car z)
(z (lambda (p @) p)))

(define (cdr z)
(z (lambda (p @) q)))

Procedural cons and car

cons

(define (cons x y)
(lambda (m) (m x y)))

car

(define (car z)
(z (lambda (p q) p)))

Lexical closure

» Takeanother look at the definition of cons

(define (cons x y)
(lambda (m) (m x y)))
(define (car z)
(z (lambda (p q) p)))

» Where did the values of x and y come from?

* Arethey still around when we call car / cdr?

current symbol definitions

» Lambda expressions evaluate to what is called
alexical closure
» acoupling of code and alexical environment (a
SCope)
» Thelexical environment is necessary because the
code needs a place to look up the definitions of
symbols it references

A-3



definition and execution

(define (cons x y)
(lambda (m) (m x y)))

» xand y arereferenced in the environment of
the lambda expression's definition
» itslexical environment, which isin the definition
of cons
* not the environment of its execution
» its dynamic environment, whichisin car

Pairs are the glue

* Using cons to build pairs, we can build data
structures of unlimited compl exity

» Wecan rall

our own

» We can adopt a standard and useit for the
basic el ements of more complex structures

Lists

» By convention, alist is asequence of linked pairs
» car of each pair is the data element
» cdr of each pair pointsto list tail or the empty list

List construction

(define e (cons 1 (cons 2 (cons 3 '()))))

(define e (list 1 2 3))

procedure 1ist

(list a b c ...)

e list returnsanewly allocated list of its arguments
» the arguments can be atomic items like numbers or quoted
symbols
» the arguments can be other lists
« The backbone structure of alist is always the same
» asequence of linked pairs, ending with a pointer to null
(the empty list)
» the car element of each pair isthe list item
» thelist items can be other lists

List structure

(define a (lis
a

I
IR
(e]

t 45 6)) (define b (list 7 a 8))

A-4



Examples of list building

(cons 1 (cons 2 '()))

AN
1
(list 1 2) n

(cons 1 (list 2))

How to process lists?

* A listis zero or more connected pairs

» Each nodeisapair

Thus the parts of alist (this pair, following
pairs) arelists

* A natural way to express list operations?

cdr down

(define (length m)
(if (null? m)
[
(+ 1 (length (cdr m)))))

sumtheitemsin alist

(add-items (list 2 5 4)) u“
(define (add-items m)
(if (null? m) n

[
(+ (car m) (add-items (cdr m)))))

Yet another list function

(define e (cons 1 (cons 2 (cons 3 '()))))

(define (zip z)
(if (pair? z)
(begin
(display (car z))
(display " ")
(zip (cdr z)))
(newline)))

(zip e)

cons up

» Wecan build alist to return to the caller piece
by piece as we go along through the input list

(define (reverse m)
(define (iter shrnk grow)
(if (null? shrnk)
grow
(iter (cdr shrnk) (cons (car shrnk) grow))))
(iterm '()))




multiply each list element by 2

(double-all (list 4 0 -3)) 1

(L4
L] [

(define (double-all m)
(if (null? m)
0
(cons (* 2 (car m)) (double-all (cdr m)))))

(cons 8 (cons 0 (cons -6 '())))

Variable number of arguments

» We can define a procedure that has zero or
more required parameters, plus provision for a
variable number of parametersto follow
» Therequired parameters arenamed in the define
statement as usual
» They arefollowed by a"." and asingle parameter
name
At runtime, the single parameter name will be
given alist of all the remaining actual
parameter values

(same-parity x . y)

(define (same-parity x . y)

> (same-parity 1 2 3 4 56 7)
(1357)

> (same-parity 2 3 4 5 6 7)
(2 4 6)

>

Thefirst argument valueis assigned to x,
all therest areassigned asalisttoy

map

» We can use the general purpose function map
to map over the elements of alist and apply
some function to them

(define (map p m)
(if (null? m)
0
(cons (p (car m))
(map p (cdr m)))))

(define (double-all m)
(map (lambda (x) (* 2 x)) m))




