
A-1

1

Topic #4: 
Pairs & Lists

CSE 413, Autumn 2004

Programming Languages

http://www.cs.washington.edu/education/courses/413/04au/

2

References

• Section 15.5, Concepts of Programming 
Languages

• Sections 6.3.2, Revised5 Report on the 
Algorithmic Language Scheme (R5RS)

• For more:
» Sections 2-2.2.1, Structure and Interpretation of 

Computer Programs

3

Procedural abstractions

• So far, we have talked about primitive data 
elements and done various levels of 
abstraction using procedures only 
» This is a key capability in being able to recognize 

and implement common behaviors

• The ability to combine data elements will 
further extend our ability to model the world

4

Compound data

• In order to build compound structures we need 
a way to combine elements and refer to them 
as a single blob

• We can write a lambda expression that 
combines one or more expressions

• We can write a cons expression that ties two 
data elements together

5

(cons a b)

• Takes a and b as args, returns a compound 
data object that contains a and b as its parts

• We can extract the two parts with accessor
functions car and cdr ("could-er")

1 2

(define a (cons 1 2)) a

6

car and cdr

1 2

(define a (cons 1 2))
a

(car (cons 3 4))

(cdr (cons 3 4))

(car a)

(cdr a)

3 4



A-2

7

car and cdr

(define a (cons 1 2))

1 2

a

3

b

1 2

a

(define b (cons a 3))

(car (car b))
(cdr (car b))
(cdr b)

8

(car (cdr c))

(define c (cons (cons 1 2) (cons 3 4)))

c

1 2

(car (car c))
(cdr (car c))
(car (cdr c))
(cdr (cdr c)) 3 4

(cdr c)

car

9

(cadr c)

• We can abbreviate the repeated use of car and cdr

c

1 2

(caar c)
(cdar c)
(cadr c)
(cddr c) 3 4

(define c (cons (cons 1 2) (cons 3 4)))

10

pair? predicate

• (pair? z) is true if z is a pair

c

1 2

(pair? c)
(pair? (car c))
(pair? (cdr c))
(pair? (caar c))
(pair? (cdar c)) 3 4

(define c (cons (cons 1 2) (cons 3 4)))

11

nil

• if there is no element present for the car or cdr
branch of a pair, we indicate that with the 
value nil
» nil (or null) represents the empty list '()

• (null? z) is true if z is nil

(define d (cons 1 '()))
(car d)
(cdr d)
(null? (car d))
(null? (cdr d))

1

d

12

What do we really know about pairs?

• An Application Programming Interface (API)
» cons - constructor

» car, cdr - accessor functions

• We may think we know how they are stored
» box-and-pointer drawings 

» pointers to pointer blocks ...

• But if we can stay at the API level, the 
separation between layers of implementation 
can stay clean which is a "good thing"



A-3

13

Can we implement cons/car/cdr?

• If we focus on the behaviors that are defined 
what do we actually need to do?

• (cons a b)

• (car something)

• (cdr something)

14

something

• We tend to think of the something returned by 
cons as a structured data variable of some sort

• However, the only actual requirement on 
something is that we can recover a and b from it 
using procedures named car and cdr

• How about we use a procedure definition for 
something ...

15

Procedural representation of pairs

(define (cons x y)

(lambda (m) (m x y)))

(define (car z)

(z (lambda (p q) p)))

(define (cdr z)

(z (lambda (p q) q)))

(define a (cons 1 2))
(car a)
(cdr a)

usage

definition

car
(define (car z)

(z (lambda (p q) p)))

(define (cons x y)

(lambda (m) (m x y)))

cons

Procedural cons and car

17

Lexical closure

• Take another look at the definition of cons

• Where did the values of x and y come from?

• Are they still around when we call car / cdr?

(define (cons x y)
(lambda (m) (m x y)))

(define (car z)
(z (lambda (p q) p)))

18

current symbol definitions

• Lambda expressions evaluate to what is called 
a lexical closure
» a coupling of code and a lexical environment (a 

scope) 

» The lexical environment is necessary because the 
code needs a place to look up the definitions of 
symbols it references 



A-4

19

definition and execution

• x and y are referenced in the environment of 
the lambda expression's definition
» its lexical environment, which is in the definition 

of cons

• not the environment of its execution
» its dynamic environment, which is in car

(define (cons x y)

(lambda (m) (m x y)))

20

Pairs are the glue

• Using cons to build pairs, we can build data 
structures of unlimited complexity

• We can roll our own

• We can adopt a standard and use it for the 
basic elements of more complex structures

21

Lists

• By convention, a list is a sequence of linked pairs
» car of each pair is the data element 

» cdr of each pair points to list tail or the empty list 

e

1

2

3

22

List construction

(define e (cons 1 (cons 2 (cons 3 '()))))

e

1

2

3

(define e (list 1 2 3))

23

procedure list
(list a b c ...)

• list returns a newly allocated list of its arguments
» the arguments can be atomic items like numbers or quoted 

symbols
» the arguments can be other lists

• The backbone structure of a list is always the same
» a sequence of linked pairs, ending with a pointer to null 

(the empty list)
» the car element of each pair is the list item
» the list items can be other lists

24

List structure

4

5

6

(define a (list 4 5 6))
a

(define b (list 7 a 8))

4

5

6

a

7

8

b



A-5

25

Examples of list building

(list 1 2)

(cons 1 (cons 2 '()))

1

2

(cons 1 (list 2))

26

How to process lists?

• A list is zero or more connected pairs

• Each node is a pair

• Thus the parts of a list (this pair, following 
pairs) are lists

• A natural way to express list operations?

27

(define (length m)
(if (null? m)

0
(+ 1 (length (cdr m)))))

cdr down

28

sum the items in a list

(add-items (list 2 5 4))

2

5

4
(define (add-items m)
(if (null? m)

0
(+ (car m) (add-items (cdr m)))))

29

Yet another list function

(define e (cons 1 (cons 2 (cons 3 '()))))

e

1

2

3

(define (zip z)
(if (pair? z)

(begin 
(display (car z))
(display " ")
(zip (cdr z)))

(newline)))

(zip e)

30

(define (reverse m)
(define (iter shrnk grow)
(if (null? shrnk)

grow
(iter (cdr shrnk) (cons (car shrnk) grow))))

(iter m '()))

cons up

• We can build a list to return to the caller piece 
by piece as we go along through the input list



A-6

31

multiply each list element by 2

(define (double-all m)
(if (null? m)

'()
(cons (* 2 (car m)) (double-all (cdr m)))))

(double-all (list 4 0 -3))

(cons 8 (cons 0 (cons -6 '())))
8

0

-6

4

0

-3

32

Variable number of arguments

• We can define a procedure that has zero or 
more required parameters, plus provision for a 
variable number of parameters to follow
» The required parameters are named in the define

statement as usual

» They are followed by a "." and a single parameter 
name

• At runtime, the single parameter name will be 
given a list of all the remaining actual 
parameter values

33

(same-parity x . y)

(define (same-parity x . y)
…

> (same-parity 1 2 3 4 5 6 7)
(1 3 5 7)
> (same-parity 2 3 4 5 6 7)
(2 4 6)
> 

The first argument value is assigned to x,
all the rest are assigned as a list to y

34

map

• We can use the general purpose function map
to map over the elements of a list and apply 
some function to them

(define (map p m)
(if (null? m)

'()
(cons (p (car m))

(map p (cdr m)))))

(define (double-all m)
(map (lambda (x) (* 2 x)) m))


