
A-1

1

Topic #2:
More Procedures

CSE 413, Autumn 2004

Programming Languages

http://www.cs.washington.edu/education/courses/413/04au/

2

References

• Section 15.5, Concepts of Programming
Languages

• For more:
» Sections 1.2-1.2.2, Structure and Interpretation of

Computer Programs

3

Abstraction is a good thing

• The span of absolute judgment and the span of
immediate memory impose severe limitations on
the amount of information that we are able to
receive, process, and remember.

• By organizing the stimulus input simultaneously
into several dimensions and successively into a
sequence or chunks, we manage to break (or at
least stretch) this informational bottleneck.
» Miller, 1956. see OtherLinks page for reference

4

3- Oct-2003 cse413-0 3-moreprocedures © 2003 University o f Washington 3

Abstraction is a good thing

• The span of absolute judgment and the span of
immediate memory impose severe limitations on
the amount of information that we are able to
receive, process, and remember.

• By organizing the stimulus input simultaneously
into several dimensions and successively into a
sequence or chunks, we manage to break (or at
least stretch) this informational bottleneck.
» Miller, 1956. see OtherLinks page for reference

For example ...

5

A clean abstraction is a good thing

• How to chop up the system in a “logical” way?

• "Common sense" design is not always obvious

• Key issues: cohesion & coupling

6

Cohesion and Coupling

• Cohesion describes the degree to which the
various parts of a single conceptual object relate
to one another in a logical way

• Coupling describes the degree to which different
conceptual objects are tied together through
implementation details and assumptions

A-2

7

Name space pollution

• One common problem that contributes to
coupling between modules is naming

• As much as possible, you want to keep the
details of your implementation from leaking out
into the outside world. Why?

8

Procedure names

• Recall that sqrta.scm defined a number of
small auxiliary procedures to accomplish the
task of calculating the square root
» sqrt-iter, good-enough?, improve

• None of these procedures are of specific
interest to the outside world
» they interfere with other designs that want to build

other procedures with the same names

» the prefix "sqrt-" is clutter in our own design

9

Helper definitions local to procedure

(define (sqrtb x)

(define (good-enough? guess x)

(< (abs (- (* guess guess) x)) 0.001))

(define (improve guess x)

(/ (+ guess (/ x guess)) 2.0))

(define (iter guess x)

(if (good-enough? guess x)

guess

(iter (improve guess x) x)))

(iter 1.0 x))

; Square root using Newton's method
; using internal definitions to make
; the helper procedures local.

10

Local names

• The names of the helper procedures are now
local to the define statement for sqrt

• The scope of the names is the define block

• Notice that the scope of the names of the
formal parameters of each local procedure is
the body of that procedure
» the parameter names of a procedure are local to

the body of the procedure

Formal params are local

12

Parameter names are local

(define (sqrtc x)

(define (good-enough? ga xa)

(< (abs (- (* ga ga) xa)) 0.001))

(define (improve gb xb)

(/ (+ gb (/ xb gb)) 2.0))

(define (iter gc xc)

(if (good-enough? gc xc)

gc

(iter (improve gc xc) xc)))

(iter 1.0 x))

A-3

13

All x parameters replaced with global x

(define (sqrtd x)

(define (good-enough? ga)

(< (abs (- (* ga ga) x)) 0.001))

(define (improve gb)

(/ (+ gb (/ x gb)) 2.0))

(define (iter gc)

(if (good-enough? gc)

gc

(iter (improve gc))))

(iter 1.0))

14

Lexical scoping

• The preceding changes to the sqrt definition
are examples of the use of lexical scoping

• Free variables (those that are not bound by the
parameter list or a local define) are taken to
refer to bindings made by enclosing procedure
definitions

• The bindings are looked up in the environment
in which the procedure was…

15

Recursion and Iteration

• Definitions
» procedure (the text definition)

» process (the actual live action events)

• A recursive procedure (one that calls itself)
does not necessarily generate a recursive
process (one that has an open deferred
operations remaining for each call)

16

Two implementations of factorial

; linear recursive

(define (facta n)

(if (= n 1)

1

(* n (facta (- n 1)))))

; iterative

(define (factb n)

(define (iter prod count)

(if (> count n)

prod

(iter (* count prod) (+ count 1))))

(iter 1 1))

17

Difference

• The key difference between the linear recursive
process and the iterative process is

18

Two implementations of simple counter
(define (print x)

(display x))

; iterative process

(define (count1 x)

(cond ((= x 0) (print x))

(else (print x)

(count1 (- x 1)))))

; linear recursive process

(define (count2 x)

(cond ((= x 0) (print x))

(else (count2 (- x 1))

(print x))))

> (count1 4)

> (count2 4)

