CSE 413: Programming Languages
and their Implementation

Luke McDowsell
Autumn Quarter 2004

Today’ s Outline

e Administrative Info

* Survey

» Overview of the Course
* Introduction to Scheme

Course Information

« Ingtructor: Luke McDowell, CSE 214
lucasm@cs.washington.edu
Office hours: 1:30-2:20 Mon, 3:30-4:20 Wed
« Teaching Assistant: Lincoln Ritter
Iritter @cs.washington.edu
Office hours. See web page
¢ Text: Concepts of Programming Languages,

Course Policies

¢ Homeworks

» Turned in electronically before 11:59pm on due date

» Late homework not accepted
« Work in teams only on explicit team projects

» Appropriate discussions encouraged — see website

» Must give credit for any such discussions on your homework
« Approximate Grading

Robert W. Sebesta, Sixth Edition » Homework: 50%
» Fifth edition isfine. » Midterm: 25% Wed November 3, in class
« Other references available from web page » Final: 25% Tues December 14, 2:30-4:20
» Revised® Report on the Algorithmic Language Scheme (R5RS)
» Link to Structure and Inter pretation of Computer Programs
4 5
Course Mechanics Course Paper

» 413 Web page:
http://www.cs.washington.edu/413
* 413 mailing list
» csed13a au04@u.washington.edu
» You should automatically beincluded if enrolled
* Course labs : Math Science Computing Labs
» Basement of Communications building: B-022/027

» Or work from home — all software available on course
web

» Slide handouts will be provided
» Also available on the web page
» Not...

» Homeworks not handed out, see the web page

A-1

That Survey Thing

» Why are you taking my picture?
» What if | forgot everything?
» What if | know this all already?
* What if I’m the famous one?

References

* Section 15.5, Concepts of Programming
Languages

¢ Section 2, Revised® Report on the Algorithmic
Language Scheme (R5RS)

* For more help:
» Sections 1-1.1.5, Structure and Interpretation of
Computer Programs (Abelson, Sussman, &
Sussman) °

Elements of Programming

* Primitive expressions

» simplest entities of the language
» Means of combination

» by which compound eements are built
» Means of abstraction

» by which compound elements can be named and
manipulated as units

There are many "languages'

« Computer programming

« Shell and scripting languages

« Applications

« Sciences

Training and Education

* Training
» learn the specifics of a known language
» build up a"tool chest" so that you can perform
specific tasks in a particular field
 Education

» learn how to recognize valid abstractions and
synthesize them in new and useful ways in many
different knowledge domains

» Well do some of both in this class

Why Scheme?

» The simplicity of thelanguage | ets us work on
problem solving, rather than just syntax issues
Flexibility of the language | ets us see that the
structure of C/Java/Basic is not the only way
to express problem solutions
* Variety isthe spice of life

» study more than one language paradigm and study

the relationship between design paradigms

» professional programmers switch languages every
few years anyway, so start practicing now

— Definitions window
enter programs here

e

Interactions window
enter expressions here

Definitions window

* Define programs in the Definitions window

» save the contents of the window to afile using
menu item File - Save Definitions As ...

» |oad existing files with menu item File - Open

» execute the contents of the definitions window by
clicking on the "Execute" (or “Run”) button

» check and highlight syntax by clicking on the
"Check Syntax" button

» Re-indent all with control-i

I nteractions Window

 Evaluate simple expressions directly in the
I nteracti ons window

» Position the cursor after the ">", then typein
your expression

» DrScheme responds by evaluating the expression
and printing the result

» recall previous expression with escape-p
* Expressions can reference symbols defined
when you executed the Definitions window

Think functionally

* Programming that makes extensive use of
assignment is known as
» The order of assignments changes the operation of the
program because the state is changed by assignment
* Programming without the use of assignment
statements is known as
» In such alanguage, all procedures implement well-
defined mathematical functions of their arguments
whose behavior does not change
» Schemeis heavily oriented towards functional
style v

Primitive Expressions

* constants
» integer :
» rational :
» real :
» boolean :
« variable names (symbals)

» Names can contain almost any character except
white space and parentheses

» Stick with simple names like vaiue, x, iter, ...

Compound Expressions

* Either acombination or a special form
1. Combination : (operator operand operand ...)
» there are quite a few pre-defined operators

» We can define our own operators

2. Specia form
» keywords in the language
» eg, define

A-3

Combinations

 (operator operand operand ...)

this is prefix notation, the operator comes first
« acombination always denotes a procedure application
« the operator isa symbol or an expression, the applied
procedure is the associated value
» +, -, abs, my-function, foop?
» characters like* and + are not special; if they do not stand
alone then they are part of some name

Evaluating Combinations

» To evaluate a combination
» Evaluate the subexpressions of the combination

» Apply the procedure that is the value of the leftmost
subexpression (the operator) to the argumentsthat are
the values of the other subexpresions (the operands)

 For example

Percolate values up atree

Evaluate
(* (+ 2 (* 46))
(+ 3 57))

Evaluating Special Forms

» Special forms have unique evaluation rules

e (define x 3) isanexample of aspecial
form; it is not a combination

» the evaluation rule for asimple defineis "associate
the given name with the given value"

» There are more special forms which wewill
encounter, but there are surprisingly few of
them compared to other languages

Procedures

References

¢ Section 15.5, Concepts of Programming Languages
* Section 4.1, Revised® Report on the Algorithmic
Language Scheme (R5RS)

« For more help:

» Sections 1.1.6-1.1.8, Structure and I nter pretation of
Computer Programs (Abelson, Sussman, & Sussman)

A-4

Recall the define special form

» Special forms have unique evaluation rules

e (define x 3) isanexample of aspecial
form; it is not a combination

» the evaluation rule for asimple defineis "associate
the given name with the given value"

Define and name a variable

e (define (name){expr))
» define - specia form
» name - name that the value of expr is bound to

» expr - expression that is evaluated to give the
value for name

e define isvalid only at thetop level of a
<program> and at the beginning of a <body>

Define and name a procedure

e (define ({name)(formal params)) (body))
» define - specia form
» name - the name that the procedure is bound to
» formal params - names used within the body of
procedure
» body - expression (or sequence of expressions)

that will be evaluated when the procedureis
called.

» Theresult of the last expression in the body will
be returned as the result of the procedure call

Example definitions

(define pi 3.1415926535)

(define (area-of-disk r)
(* pi (* r r)))

(define (area-of-ring outer inner)
(- (area-of-disk outer)

(area-of-disk inner)))

Defined procedures are "first class'

» Compound procedures that we define are used
exactly the same way the primitive procedures
provided in Scheme are used

» names of built-in procedures are not treated
specially; they are simply names that have been
pre-defined

» you can't tell whether a name stands for a
primitive (built-in) procedure or a compound
(defined) procedure by looking at the name or how
itisused

30

Evaluation example

e (area-of-ring 4 1)

A-5

Booleans

» Recall that one type of data object is boolean
» #t (true) or #£ (false)
» We can usethese explicitly or by calculating
them in expressions that yield bool ean values
» An expression that yields atrue or false value
is called a predicate
> #t =>
» (¢« 5 5) =>
» (> pi 0) =>

Conditional expressions

» Asinall languages, we need to be ableto
make decisions based on inputs and do
something depending on the result

Predicate Consequent

Special form: cond

e (cond (clause))(clause,) ... (clausey)
 each clauseis of the form
» ({predicate) (expression))

» thelast clause can be of the form
» (else (expression))

Example: sign.scm

; return the sign of x as -1, 0, or 1

(define (sign x)
(cond
((< x 0) -1)
((= x 0) 0)
((> x 0) +1)))

Special form: i f

e (if (predicate) (consequent) (alternate))

e (if (predicate) (consequent))

Examples : abs.scm

; absolute value function
(define (abs a)

Examples : true-false.scm

; return 1 if arg is true, 0 if arg is false
(define (true-false arg)

Logical composition

¢ (and (e)(ey..(e))
o (or (g)(ey..{(e))
e (not (e))

Scheme interprets the expressions g one at atimein
left-to-right order until it can tell the correct answer

in-range.scm

; true if val is lo <= val <= hi

(define (in-range lo val hi)
(and (<= lo val)
(<= val hi)))

Newton's method for square root

Guess avaluey for the square root of x

Isit close enough to the desired value ix 2
» ig isy? closeto x?

If yes, then done. Return recent guess.

If no, then new guess is average of current

guessand —
guess

Repeat with new guess

sgrta.scm

; Square root using Newton's method

(define (average a b)
(/ (+ ab) 2.0))

(define (good-enough? guess x)
(< (abs (- (* guess guess) x)) 0.001))

(define (improve guess x)
(average guess (/ x guess)))

(define (sgrt-iter guess x)
(if (good-enough? guess x)
guess
(sqrt-iter (improve guess x) x)))

(define (sqrta x)
(sqrt-iter 1.0 x))

auxiliary functions

; Square root using Newton's method

(define (average a b)
(/ (+ a b) 2.0))

(define (good-enough? guess x)

(< (abs (- (* guess guess) x)) 0.001))

(define (improve guess x)
(average guess (/ x guess)))

iterator and main functions

(define (sgrt-iter guess x)
(if (good-enough? guess x)
guess
(sqrt-iter (improve guess x) x)))

(define (sgrta x)
(sqgrt-iter 1.0 x))

sort-iter

Our first example of recursion

Notethat this recursion is used to implement a
loop (an iteration)

» Wewill see this over and over in Scheme

Iteration is calling the same block of code with a
changing set of parameters
The syntax of the procedure is recursive but the
resulting processisiterative

» more on this later

A-8

