
A-1

2

CSE 413: Programming Languages
and their Implementation

Luke McDowell

Autumn Quarter 2004

3

Today’s Outline

• Administrative Info

• Survey

• Overview of the Course

• Introduction to Scheme

4

Course Information

• Instructor: Luke McDowell, CSE 214
lucasm@cs.washington.edu
Office hours: 1:30-2:20 Mon, 3:30-4:20 Wed

• Teaching Assistant: Lincoln Ritter
lritter@cs.washington.edu
Office hours: See web page

• Text: Concepts of Programming Languages,
Robert W. Sebesta, Sixth Edition
» Fifth edition is fine.

• Other references available from web page
» Revised5 Report on the Algorithmic Language Scheme (R5RS)
» Link to Structure and Interpretation of Computer Programs

5

Course Policies

• Homeworks
» Turned in electronically before 11:59pm on due date
» Late homework not accepted

• Work in teams only on explicit team projects
» Appropriate discussions encouraged – see website
» Must give credit for any such discussions on your homework

• Approximate Grading
» Homework: 50%
» Midterm: 25% Wed November 3, in class
» Final: 25% Tues December 14, 2:30-4:20

6

Course Mechanics

• 413 Web page:
http://www.cs.washington.edu/413

• 413 mailing list
» cse413a_au04@u.washington.edu

» You should automatically be included if enrolled

• Course labs : Math Science Computing Labs
» Basement of Communications building: B-022/027

» Or work from home – all software available on course
web

7

Course Paper

• Slide handouts will be provided
» Also available on the web page

» Not…

• Homeworks not handed out, see the web page

A-2

8

That Survey Thing

• Why are you taking my picture?

• What if I forgot everything?

• What if I know this all already?

• What if I’m the famous one?

9

References

• Section 15.5, Concepts of Programming
Languages

• Section 2, Revised5 Report on the Algorithmic
Language Scheme (R5RS)

• For more help:
» Sections 1-1.1.5, Structure and Interpretation of

Computer Programs (Abelson, Sussman, &
Sussman)

10

Elements of Programming

• Primitive expressions
» simplest entities of the language

• Means of combination
» by which compound elements are built

• Means of abstraction
» by which compound elements can be named and

manipulated as units

11

There are many "languages"

• Computer programming

• Shell and scripting languages

• Applications

• Sciences

12

Training and Education

• Training
» learn the specifics of a known language

» build up a "tool chest" so that you can perform
specific tasks in a particular field

• Education
» learn how to recognize valid abstractions and

synthesize them in new and useful ways in many
different knowledge domains

• We'll do some of both in this class

13

Why Scheme?

• The simplicity of the language lets us work on
problem solving, rather than just syntax issues

• Flexibility of the language lets us see that the
structure of C/Java/Basic is not the only way
to express problem solutions

• Variety is the spice of life
» study more than one language paradigm and study

the relationship between design paradigms
» professional programmers switch languages every

few years anyway, so start practicing now

A-3

14

Example DrScheme screen

Definitions window
enter programs here

Interactions window
enter expressions here

15

Definitions window

• Define programs in the Definitions window
» save the contents of the window to a file using

menu item File - Save Definitions As …

» load existing files with menu item File - Open

» execute the contents of the definitions window by
clicking on the "Execute" (or “Run”) button

» check and highlight syntax by clicking on the
"Check Syntax" button

» Re-indent all with control-i

16

Interactions Window

• Evaluate simple expressions directly in the
Interactions window

• Position the cursor after the ">", then type in
your expression
» DrScheme responds by evaluating the expression

and printing the result

» recall previous expression with escape-p

• Expressions can reference symbols defined
when you executed the Definitions window

17

Think functionally
• Programming that makes extensive use of

assignment is known as
» The order of assignments changes the operation of the

program because the state is changed by assignment

• Programming without the use of assignment
statements is known as
» In such a language, all procedures implement well-

defined mathematical functions of their arguments
whose behavior does not change

• Scheme is heavily oriented towards functional
style

18

Primitive Expressions

• constants
» integer :

» rational :

» real :

» boolean :

• variable names (symbols)
» Names can contain almost any character except

white space and parentheses

» Stick with simple names like value, x, iter, ...

19

Compound Expressions

• Either a combination or a special form

1. Combination : (operator operand operand …)
» there are quite a few pre-defined operators

» We can define our own operators

2. Special form
» keywords in the language

» eg, define

A-4

20

Combinations
• (operator operand operand …)

• this is prefix notation, the operator comes first

• a combination always denotes a procedure application

• the operator is a symbol or an expression, the applied
procedure is the associated value
» +, -, abs, my-function, foop?

» characters like * and + are not special; if they do not stand
alone then they are part of some name

21

Evaluating Combinations

• To evaluate a combination
» Evaluate the subexpressions of the combination

» Apply the procedure that is the value of the leftmost
subexpression (the operator) to the arguments that are
the values of the other subexpresions (the operands)

• For example

22

Percolate values up a tree
Evaluate
(* (+ 2 (* 4 6))

(+ 3 5 7))

23

Evaluating Special Forms

• Special forms have unique evaluation rules

• (define x 3) is an example of a special
form; it is not a combination
» the evaluation rule for a simple define is "associate

the given name with the given value"

• There are more special forms which we will
encounter, but there are surprisingly few of
them compared to other languages

24

Procedures

25

References

• Section 15.5, Concepts of Programming Languages
• Section 4.1, Revised5 Report on the Algorithmic

Language Scheme (R5RS)

• For more help:
» Sections 1.1.6-1.1.8, Structure and Interpretation of

Computer Programs (Abelson, Sussman, & Sussman)

A-5

26

Recall the define special form

• Special forms have unique evaluation rules

• (define x 3) is an example of a special
form; it is not a combination
» the evaluation rule for a simple define is "associate

the given name with the given value"

27

Define and name a variable

• (define 〈name〉 〈expr〉)

» define - special form

» name - name that the value of expr is bound to

» expr - expression that is evaluated to give the
value for name

• define is valid only at the top level of a
<program> and at the beginning of a <body>

28

Define and name a procedure

• (define (〈name〉 〈formal params〉) 〈body〉)

» define - special form

» name - the name that the procedure is bound to

» formal params - names used within the body of
procedure

» body - expression (or sequence of expressions)
that will be evaluated when the procedure is
called.

» The result of the last expression in the body will
be returned as the result of the procedure call

29

Example definitions

(define pi 3.1415926535)

(define (area-of-disk r)

(* pi (* r r)))

(define (area-of-ring outer inner)

(- (area-of-disk outer)

(area-of-disk inner)))

30

Defined procedures are "first class"

• Compound procedures that we define are used
exactly the same way the primitive procedures
provided in Scheme are used
» names of built-in procedures are not treated

specially; they are simply names that have been
pre-defined

» you can't tell whether a name stands for a
primitive (built-in) procedure or a compound
(defined) procedure by looking at the name or how
it is used

31

Evaluation example

• (area-of-ring 4 1)

A-6

32

Booleans

• Recall that one type of data object is boolean
» #t (true) or #f (false)

• We can use these explicitly or by calculating
them in expressions that yield boolean values

• An expression that yields a true or false value
is called a predicate
» #t =>

» (< 5 5) =>

» (> pi 0) =>

33

Conditional expressions

• As in all languages, we need to be able to
make decisions based on inputs and do
something depending on the result

Predicate Consequent

34

Special form: cond

• (cond 〈clause1〉 〈clause2〉 ... 〈clausen〉)

• each clause is of the form
» (〈predicate〉 〈expression〉)

• the last clause can be of the form
» (else 〈expression〉)

35

Example: sign.scm

; return the sign of x as -1, 0, or 1

(define (sign x)

(cond

((< x 0) -1)

((= x 0) 0)

((> x 0) +1)))

36

Special form: if

• (if 〈predicate〉 〈consequent〉 〈alternate〉)

• (if 〈predicate〉 〈consequent〉)

37

Examples : abs.scm

; absolute value function

(define (abs a)

A-7

38

Examples : true-false.scm

; return 1 if arg is true, 0 if arg is false

(define (true-false arg)

39

Logical composition

• (and 〈e1〉 〈e2〉... 〈en〉)

• (or 〈e1〉 〈e2〉... 〈en〉)

• (not 〈e〉)

• Scheme interprets the expressions ei one at a time in
left-to-right order until it can tell the correct answer

40

in-range.scm

; true if val is lo <= val <= hi

(define (in-range lo val hi)

(and (<= lo val)

(<= val hi)))

41

Newton's method for square root

• Guess a value y for the square root of x

• Is it close enough to the desired value ?
» ie, is y2 close to x?

• If yes, then done. Return recent guess.

• If no, then new guess is average of current
guess and

• Repeat with new guess
guess

x

2 x

42

sqrta.scm
; Square root using Newton's method

(define (average a b)
(/ (+ a b) 2.0))

(define (good-enough? guess x)
(< (abs (- (* guess guess) x)) 0.001))

(define (improve guess x)
(average guess (/ x guess)))

(define (sqrt-iter guess x)
(if (good-enough? guess x)

guess
(sqrt-iter (improve guess x) x)))

(define (sqrta x)
(sqrt-iter 1.0 x))

43

auxiliary functions

; Square root using Newton's method

(define (average a b)
(/ (+ a b) 2.0))

(define (good-enough? guess x)
(< (abs (- (* guess guess) x)) 0.001))

(define (improve guess x)
(average guess (/ x guess)))

A-8

44

iterator and main functions

(define (sqrt-iter guess x)
(if (good-enough? guess x)

guess
(sqrt-iter (improve guess x) x)))

(define (sqrta x)
(sqrt-iter 1.0 x))

45

sqrt-iter

• Our first example of recursion

• Note that this recursion is used to implement a
loop (an iteration)
» We will see this over and over in Scheme

• Iteration is calling the same block of code with a
changing set of parameters

• The syntax of the procedure is recursive but the
resulting process is iterative
» more on this later

