
CSE 413 – AU 04 – Programming Languages Homework 8

 Page 1 of 10

DUE: Thursday, December 9, 2004, 11:59 p.m.
fm language compiler

For this assignment (finally, the last part of the compiler!), you will add code to the parser that you
wrote in hw7 so that it generates an actual executable program (in the Postscript language).

The implementation plan is that the code generation is included directly in the parser at the
appropriate points as the parser discovers the structure of the program. The generated code is fairly
straightforward, since it is mostly expression evaluation and function calls.

We have provided you with a solution Parser.java for HW7, so you may use that or your own code
as a starting point. However, we have also provided some additional new code in Parser.java that
you will find helpful – these are the parts marked (PROVIDED) below. So you may want to either
use our Parser.java to start, or else copy the relevant parts to your own code.

java class Flip

This is the main program for the compiler. It is very similar to ParseTest.java from hw7. It expects
to be able to call the method setShowCode(boolean b) in the Parser, so you will have to implement
at least that one method before the program will compile.

java class Parser

This is the only class that needs to be modified for this assignment.

(PROVIDED) You need to add a method to the Parser class named public void
setShowCode(boolean b) to set a flag that tells the Parser whether or not to generate code. This
method works exactly the same way as setShowMethods(boolean b) implemented in hw7. It
stores the provided boolean value in an instance variable (a variable showCode is already defined
for you in Parser.java), and then the code generation methods check to see if they should emit code
when called.

The following additions to the Parser class all generate Postscript code one way or another.

(PROVIDED) private void generateCode(String code)

If showCode is enabled, this method calls the emit method with the code string it is provided. It is
up to the calling routine to define the proper string. There is a discussion later on in this writeup
about what actually needs to be generated.

(PROVIDED) private void generateMovieStart(String title)

Postscript files are organized according to the Document Structuring Conventions (DSC). A simple
document starts with several lines of comments. For example, StickBoy.ps starts with:

CSE 413 – AU 04 – Programming Languages Homework 8

 Page 2 of 10

%!PS-Adobe-3.0
% movie StickBoy {
%%Title: StickBoy
%%Pages: (atend)
%%EndComments

The first line identifies the file as Postscript. It is the same for every Postscript file and is written
out with a call to generateCode in the parse method (described later). The second line is the echoed
source code from the file, written out when the source line is read in. The third, fourth, and fifth
lines are generated by the generateMovieStart method and written out with the CompilerIO
emit method (if showCode is enabled). The title string, in this case "StickBoy", is written as part of
the title line. The other two lines are the same for every file.

(PROVIDED) private void generateMovieEnd()

The Postscript file ends with a few DSC comments that wrap it up. For example, StickBoy.ps ends
with

%%Trailer
%%Pages: 40
%%EOF

These lines are generated by generateMovieEnd. The only variable portion is the number of
pages which is tracked throughout the Parser. The technique for doing this is described later, under
parsePageBlock().

private void generatePrologStart()

Every Postscript file that our programs generate will have a "prolog", a section that applies to all
pages of the document. The beginning of this section is the same for every document, so we can put
the code in a file and copy it to the output object file. If showCode is enabled, then method
generatePrologStart copies the contents of FlipPrologStart.ps to the output file using
emitFile.

private void generatePrologEnd()

Similarly, the end of every prolog is the same for every document, so we put the code in a file and
copy it using emitFile if showCode is enabled. The file to copy is FlipPrologEnd.ps.

CSE 413 – AU 04 – Programming Languages Homework 8

 Page 3 of 10

(PROVIDED) private String operator(Token t)

/**
* Convert an operator token into the appropriate postscript name
* @param t the Token containing the operator
* @return the equivalent postscript operator
*/
private String operator(Token t) {
 String s = "UNKNOWNOPERATOR";
 if (t == null) return s;
 int op = t.getType();
 if (op == Token.OP_NOT) s = "not";
 else if (op == Token.OP_EQ) s = "eq";
 else if (op == Token.OP_LT) s = "lt";
 else if (op == Token.OP_GT) s = "gt";
 else if (op == Token.OP_ADD) s = "add";
 else if (op == Token.OP_SUB) s = "sub";
 else if (op == Token.OP_MUL) s = "mul";
 else if (op == Token.OP_DIV) s = "div";
 return s;
}

Generating the code to be emitted

The only remaining task is to actually generate the code and emit it during the parsing process. This
is relatively straightforward but somewhat tedious. We are implementing the "semantic actions"
associated with the syntax when we do this.

in public boolean parse()

Use generateCode to write out the Postscript identifier string "%!PS-Adobe-3.0" before you do
anything else.

in private void parseProgram()

After matching the Token.ID that is the name of the movie, use
generateMovieStart(prevToken.getLabel()) to generate the beginning of file information as
described above under generateMovieStart.

After matching the Token.EOF that indicates the end of the source file, use generateMovieEnd() to
generate the end of file information as described above under generateMovieEnd.

in private void parseProgram()

You should call generatePrologStart() at the beginning of this method. Then if there is a prolog in
the FM you are already calling parsePrologBlock(). After this, call generatePrologEnd(),
independent of whether there was a prolog or not, before calling parsePageBlocks().

CSE 413 – AU 04 – Programming Languages Homework 8

 Page 4 of 10

(PROVIDED) in parseVariableDeclaration()

(This is provided but read carefully as an example)
Here we actually generate some real code. The productions associated with this method are

11. variableDeclaration →→→→ id : type(); | id : type(exprList);

So, your method code has several calls to matchToken as you work your way through the
productions. You need to add code to generate a symbol declaration in Postscript. Let's assume
your code looks something like mine. Here's what the resulting method looks like. This is an
explicit example of the implementation to give you an idea of how this works.

 // Match name of variable and add to symbol table
 matchToken(Token.ID);
 Symbol var = new Symbol(prevToken.getLabel(),Symbol.VARIABLE);
 symbolTable.putSymbol(SC_VARIABLE,var.getLabel(),var);
 matchToken(Token.COLON);
 generateCode("/"+var.getLabel()); // ps literal symbol

 // Get type of variable and add this as an attribute of the variable
 matchToken(Token.ID);
 String type = prevToken.getLabel();
 var.putAttribute("CLASSNAME",type);

 // Get arguments, if any
 matchToken(Token.LPAREN);
 if (theToken.getType()!=Token.RPAREN) {
 parseExprList();
 }
 matchToken(Token.RPAREN);

 generateCode(type+"."+type+" def");// call constructor and store result
 traceSymbol(var);
 matchToken(Token.SEMICOLON);

Notice that various actions are taken as we know the information needed.

First of all, once we have decoded the name of the variable, we can generate the beginning of the
Postscript definition statement. This has the form "/name value def". So when we know the name
of the variable, we write out "/name".

The Token.ID that follows the colon is the type of the variable, so we parse that and save the result
as an attribute of the Symbol. The attribute is called CLASSNAME, and we store that for later use.

Then we parse the expression list if there is one. The Postscript to implement that expression list is
emitted during the parsing, so we don't need to worry about it here.

Finally we match the right paren, and generate the call to the appropriate constructor followed by
the Postscript operator def. The name of the constructor is the name of the type, followed by a dot,
followed by the name of the type again, eg. Integer.Integer. For example, the first variable
declaration in StickBoy.fm is:

CSE 413 – AU 04 – Programming Languages Homework 8

 Page 5 of 10

outline : Box(540,720);

and this generates the Postscript code:

/outline
540
720
Box.Box def

in parsePageBlock()

The production associated with pageBlock is

13. pageBlock → show (integer) { pageStatements }

The show statement executes all the pageStatements for however many pages are specified. One
feature of conventionally structured Postscript files is that each page of the document must stand
alone. Consequently, you can't carry a variable value over from page to page. The only thing that
you can assume is that the prolog has been executed.

The way I chose for us to implement this is to parse all the pageStatements and emit the code to the
buffer, then copy that code over and over for however many pages were specified, with appropriate
header and footer code to mark each page.

The number of pages to be generated is given by the integer in parens. So after you parse this
integer token, you need to extract the value and store it in a local variable that you can use for loop
control later. Something like "int nPages = prevToken.getIntValue();" will do the trick.

After matching the Token.LCURLY, and before parsing the pageStatements, you need to call
CompilerIO.openBuffer so that the pageStatement code is emitted to the buffer. After finishing
with parsePageStatements, you call closeBuffer.

At this point, you have parsed and compiled all the code in the pageBlock that describes the pages,
but you have not written it out to the Postscript output file.

We keep track of the current page number using a Symbol defined and updated by the Parser. This
Symbol is named pageNumber, and can be referenced by the fm code just as though it were a user
declared variable. The initial value is 0, set in the Parser constructor, but it is updated in our
SymbolTable and in the generated Postscript code before each page is written to the output file.

You can get the current value of pageNumber from the SymbolTable like this:

Symbol pc = symbolTable.getSymbol(SC_VARIABLE,"pageNumber");
int count = ((Integer)pc.getAttribute("value")).intValue();

CSE 413 – AU 04 – Programming Languages Homework 8

 Page 6 of 10

So we now have all the information needed to write the code for each page of the pageBlock. If
showCode is enabled, the method should loop nPages times and generate the following code:

1. The beginning of a page. This code is written with one or more calls to generateCode. The

code comprises a DSC comment identifying the page, the Postscript save operator, and a
definition of the pageNumber variable. For example, the first page of StickBoy.ps starts with
the following code.

%%Page: x.1 1
save
/pageNumber 1 def

The variable parts are the page number (x.1 and 1) in the %%Page line, and the page number
(1) in the pageNumber definition line.

2. Whatever code is in the buffer. This code is copied to output with a call to emitBuffer.
3. The end of a page. This code is written with one or more calls to generateCode. The code

comprises the Postscript restore and showpage operators. For example, the first page of
StickBoy.ps ends with the following code:

restore
showpage

The page number that is written out in each case is count+k, where count is the number of pages
previously written and k is the page within the current page block. Exception: when writing the
first page number in the “%%Page” line (the one following “x.”), you should use only the relative
page number ‘k’, the page within the current page block.

After writing out all the pages in this page block, you need to update the value of pageNumber in
the SymbolTable so that it is correct if another pageBlock is compiled. The final pageNumber is
also the value that is used to calculate the total number of pages in generateMovieEnd().

pc.putAttribute("value",new Integer(count+nPages));

in parsePageStatement()

Here we generate some more executable code. The productions associated with pageStatement are:

 15. pageStatement →
 { pageStatements }

| methodCall;
| id = expr;

 | if (boolExpr) pageStatement
 | if (boolExpr) pageStatement else pageStatement

Nothing special needs to be generated for the pageStatements non-terminal.

CSE 413 – AU 04 – Programming Languages Homework 8

 Page 7 of 10

For the two "if" productions, we need to generate a Postscript "if" or "ifelse" statement. The format
of such a statement is "boolean procedure if" or "boolean procedure1 procedure2 ifelse".
Procedures in Postscript are surrounded by curly brackets "{" and "}".

The process for an "if" statement is as follows. After matching Token.KW_IF and
Token.LPAREN, we parse the boolExpr. This will emit the code to generate a boolean value. We
then use generateCode to write out a left curly "{". Following this, we parse the pageStatement that
is executed if the boolean is true using parsePageStatement, and then use generateCode to write out
a right curly "}".

If the next token is Token.KW_ELSE, we need to generate procedure2 for the false condition. To
do this, we use generateCode to write out a left curly "{", parse the pageStatement that is executed
if the boolean is false, and then use generateCode to write out a right curly "}".

Following this the parser uses generateCode to write out the correct operator, either if or ifelse.

The two remaining productions both start with a Token.ID. This ambiguity could be fixed by a left-
factor rewrite of the grammar, but I chose to just do a little ad-hoc fix in the code.

case Token.ID: { // Either a method call or an assignment
 matchToken(Token.ID);
 Token t = prevToken; // remember the id at the beginning
 if (isFirst(theToken,"callEnd")) { // start of a method call or ...
 parseCallEnd(t);
 matchToken(Token.SEMICOLON);
 } else { // ... an assignment statement
 matchToken(Token.OP_ASSIGN);
 generateCode("/"+t.getLabel());
 parseExpr();
 generateCode("def");
 matchToken(Token.SEMICOLON);
 }
 break;
}

Notice that the Token describing the id at the beginning of the statement is passed down to
parseCallEnd so that the procedure call can be formatted correctly.

The assignment statement is simply another def expression starts with /name, followed by the right
hand side expression followed by the Postscript def operator.

CSE 413 – AU 04 – Programming Languages Homework 8

 Page 8 of 10

in parseExprTail()

This is where we generate the additive expression operators. The relevant production is

16.2 exprTail → + term exprTail | - term exprTail | ε

If you have a OP_ADD or OP_SUB token here, then you need to first output the code for second
operand of the sum/difference (by calling parseTerm()), then output the appropriate Postscript
function call (this operator must be last, since Postscript is a postfix language). You can generate
this postscript by calling generateCode(operator(opToken)) at the appropriate time. Notice
that operator() requires a Token argument, so you’ll need to remember the appropriate Token to use.

in parseTermTail()

This method is very similar to parseExprTail. The relevant production is

17.2 termTail → * factor termTail | / factor termTail | ε

in parseFactor()

Now we are actually emitting the values that form the expressions. The relevant production is

18. factor → integer | real | (expr) | id | methodCall

For a Token.INTEGER, we just emit the integer value that was parsed. So we have something like:

case Token.INTEGER: {
 matchToken(Token.INTEGER);
 generateCode(Integer.toString(prevToken.getIntValue()));
 break;
}

Token.REAL is very similar. (the Java class you want is Double)

For Token.ID, we have to distinguish between a method call and a reference to a variable by itself,
just as we did for the assignment statement. Again, I chose to distinguish them in the code, rather
than a grammar rewrite. The result can look something like this:

default: // (this is for a case Token.ID)
 matchToken(Token.ID);
 Token t = prevToken; // remember the id at the beginning
 if (isFirst(theToken,"callEnd")) { // start of a method call or ...
 parseCallEnd(t);
 } else { // ... a variable by itself
 Symbol var = symbolTable.getSymbol(SC_VARIABLE,t.getLabel());
 if (var == null) {
 throw new SyntaxException("Variable must be declared before use: "+t.getLabel());
 }
 generateCode(t.getLabel());
 }
 break;
}

CSE 413 – AU 04 – Programming Languages Homework 8

 Page 9 of 10

in parseCallEnd(Token t)

There are two kinds of method calls defined in fm, those that are standard Postscript functions (ie,
they do not refer to a particular variable) and those that are instance methods (ie, they refer to a
particular variable). The relevant production is

19. methodCall → id() | id(exprList) | id.id () | id.id(exprList)
19.1 methodCall → id callEnd
19.2 callEnd → () | (exprList) | .id() | .id(exprList)

Since the initial Token.ID has already been matched before we get to parseCallEnd, that token is
passed into the method.

The standard Postscript functions do not use the dot notation and have no notion of an associated
variable. Thus the implementation is relatively simple. Match the Token.LPAREN, parse the
exprList if any (which will emit the appropriate code for the method arguments), match the
Token.RPAREN, and then emit the name of the method to call using generateCode(t.getLabel()).
You don’t have to check that this is a legal postscript method, just pass along whatever was in the
input file. For example, the expression abs(3) is compiled to

3
abs

The instance methods are a little more complicated because we need to know the variable, the
method name, and the variable type in order to generate the call correctly. My implementation of a
call to an instance method looks like this:

default: // id.id(), id.id(exprList) or ...
 matchToken(Token.DOT);
 matchToken(Token.ID);
 Token t2 = prevToken;
 matchToken(Token.LPAREN);
 if (theToken.getType()!=Token.RPAREN) {
 parseExprList();
 }
 matchToken(Token.RPAREN);
 Symbol var = symbolTable.getSymbol(SC_VARIABLE,t.getLabel());
 if (var == null) {
 throw new SyntaxException("Variable must be declared before use: "+t.getLabel());
 }
 String type = (String)var.getAttribute("CLASSNAME");
 if (type == null) {
 throw new SyntaxException("Object reference must have defined class type: "+t.getLabel());
 }
 generateCode(t.getLabel()); // the variable (ie, "this")
 generateCode(type+"."+t2.getLabel()); // the class method
 break;

For example, the expression outline.draw(30,50); in StickBoy.fm is compiled to the following:

30
50
outline
Box.draw

CSE 413 – AU 04 – Programming Languages Homework 8

 Page 10 of 10

in parseBoolExpr()

This is pretty simple, since the only actual code here is the not operator. If the expression starts
with !, then we match Token.OP_NOT, remember the operator, match Token.LPAREN, parse the
relExpression (which will emit the code needed to evaluate the relative expression), match
Token.RPAREN, and then generateCode(operator(opToken)) which will emit the not operator.

If the boolExpr does not start with !, then we just parseRelExpr and let it do the work.

in parseRelExpr()

This is also pretty simple. We just need to move the operator to the end to conform to postfix
notation and generate the appropriate Postscript operator, again with then
generateCode(operator(opToken))

Debugging

We have provided a number of test files in the fm directory. It’s not required that your output
exactly match our sample output, but they should be semantically equivalent – e.g. give the same
postscript commands in the same order, and your output should be a legal postscript file. You can
test this in two ways:

1. Compare against our sample output. You may want to use some program to help the
comparison. For instance, download CompareIt from http://www.grigsoft.com/files.htm

2. Using GSView to accept view the output Post script and see if it has the same behavior as
the provided files.

If you use the provided starter code the output postscript should match pretty closely. When you
compare, remember that comments which are the result of echoing the input files can be ignored.

Turn-in

Just Parser.java.

