
CSE 413 – Au 04 – Programming Languages FM Language Specification

FM is a small language designed for expressing the content of flip movies. It uses objects of
externally defined types, allows calls to methods on those objects, and understands simple
expressions and the “if” control statement.

Note that the productions have been re-factored since the last
assignment (e.g. 4 became 4.1 and 4.2) in order to remove left
recursion and simplify your implementation.

1. program → movie name { movieBody } EOF
2. movieBody → prologBlock pageBlocks | pageBlocks
3. prologBlock → prolog { prologStatements }
4.1 prologStatements → prologStatement prologTail
4.2 prologTail → prologStatement prologTail | ε
5. prologStatement → variableDeclaration
11. variableDeclaration →→→→ id : type(); | id : type(exprList);
12.1 pageBlocks → pageBlock pageBlocksTail
12.2 pageBlocksTail → pageBlock pageBlocksTail | ε
13. pageBlock → show (integer) { pageStatements }
14.1 pageStatements → pageStatement pageTail
14.2 pageTail → pageStatement pageTail | ε
15. pageStatement →
 { pageStatements }

| methodCall;
| id = expr;

 | if (boolExpr) pageStatement
 | if (boolExpr) pageStatement else pageStatement
16.1 expr → term exprTail
16.2 exprTail → + term exprTail | - term exprTail | ε
17.1 term → factor termTail
17.2 termTail → * factor termTail | / factor termTail | ε
18. factor → integer | real | (expr) | id | methodCall
19.1 methodCall → id callEnd
19.2 callEnd → () | (exprList) | .id() | .id(exprList)
20.1 exprList → expr exprListTail
20.2 exprListTail → , expr exprListTail | ε
21. boolExpr → relExpr | ! (relExpr)
22. relExpr → expr == expr | expr > expr | expr < expr
23. type → id

CSE 413 – Au 04 – Programming Languages FM Language Specification

Language Notes

Comments, blanks, and other whitespace are ignored except as needed to separate adjacent
syntactic tokens. A comment begins with the token // and continues to the end of the line.

There are three undefined nonterminals in the grammar: id, integer, and real. An integer consists
of 1 or more digits (0-9) and denotes a decimal integer. A real consists of one or more digits (0-
9) followed by a decimal point “.”, followed by one or more digits (0-9). An identifier id must
begin with a letter, and consists of 1 or more letters, digits, and underscores. Upper- and lower-
case letters are distinct, thus aa, AA, Aa, and aA are four different identifiers.

The keywords in the grammar (movie, if, etc.) are reserved and may not be used as identifiers.

All integer values are 32-bit, two's complement numbers.

The fm language includes binary arithmetic operators +, -, * and /. There are no unary + or -
operators. The value -n can be computed by evaluating 0-n.

A bool-exp is a logical expression, which may only be used as a condition in an if statement.
Logical expressions do not have integer values and cannot be stored in variables.

In conditional statements, each else is paired with the nearest previous unpaired if.

