
CSE 413 – AU 04 – Programming Languages Homework 6

 Page 1 of 4

DUE: Monday November 22, 2004, 11:59 p.m.

For this part of the assignment you will design, implement and test a scanner for the fm language,
which is defined in a separate handout (see fm-spec-r1.pdf). The scanner, as well as the rest of
your compiler, should be written in Java. As examples of what your compiler will eventually be
able to do, see fm/StickBoy.ps and fm/TetheredBox.ps. (use GSView to view these).

A scanner (or lexical analyzer) reads the character (text) representation of a program and
transforms it into a stream of tokens representing the basic lexical items in the language. These
tokens include punctuation (lparen, rparen, semicolon, ...), keywords (if, prolog, show, ...), integer
and floating point literals, and identifiers. The scanner skips over whitespace and comments in the
source code; these are ignored by the compiler and do not appear in the token stream that will
eventually be read by the parser.

You should review the grammar definition and decide on all the tokens that you need to recognize.
You might want to write down simple deterministic finite automata drawings for the portions of the
scanner that will skip whitespace or recognize ids, integers, and reals so that you are sure you
understand what you are trying to implement.

java class Scanner

The scanner should be defined as the Java class Scanner.

There is one constructor for the Scanner class that takes two arguments, a CompilerIO object and a
SymbolTable object. The Scanner uses the methods of CompilerIO to read and write files, and the
methods of the SymbolTable object to keep track of information about the symbols it should know
about (ie, the fm language keywords).

The Scanner class should provide a method public Token nextToken()that the client
program can call to obtain tokens sequentially. The nextToken method looks at the input
characters one after another and essentially executes a DFA to isolate and recognize the significant
tokens in the language. It returns a Token object of the appropriate type, depending on the input
that it sees.

You may want to define various private methods to facilitate the operations of nextToken. In
my implementation, I have private helper methods skipWhitespace,
getCurrentCharacter, acceptCurrentCharacter, and invalidCharacter.

private void skipWhitespace() gets and accepts characters until it finds something that
is not whitespace. This process advances the current character position. The advance may extend
over several lines.

private char getCurrentCharacter() returns the current character to the caller. It
returns a newline (‘\n’) if the current character position has been advanced to one past the last
character in the most recent input line. private void acceptCurrentCharacter ()

CSE 413 – AU 04 – Programming Languages Homework 6

 Page 2 of 4

actually advances the character position. If this advance would put the character position more than
one past the last character, then a new source line is read in and the character position is reset to 0.

private void invalidCharacter(char c) takes a character that has been determined
to be inappropriate (either because it can’t fit in the current context or because that character is
never permitted in the language) and prints an error message using the CompilerIO method
emit(). If you find an invalid character, print the error message, skip the character, and continue
scanning.

You don’t need to use the same design, but you need to think about how you will accomplish the
various functions.

Aside from implementing the DFA that recognizes the tokens, you need to understand what you are
doing with the input strings from the source file. The CompilerIO method readSrcLine returns
the source file one entire line at a time, but you are scanning it one character at a time. Be sure you
think about the details of what happens at end-of-line and end-of-file. The methods
getCurrentCharacter and acceptCurrentCharacter described above are one way to
isolate the main scanning process from some of the details related to file reading.

To get a better idea of dealing with end of file, here is the javadoc for one possible implementation
of getCurrentCharacter():

/**
* Get the current character from the source file. If we are
* at EOF, then srcLine is null and this method returns 0.
* The caller should check for srcLine == null before using
* the returned char. If we are not at EOF, but we are at
* the end of this line, then we return a newline character ('\n').
* If none of the above are true, then we are pointing to a
* character in the current srcLine and so we return that char.
* idx always points to the current character. If it is equal
* to the length of the srcLine, then it is trying to point
* to the (virtual) newline.
* @return the currently available character.
*/

You’ll need a table of language keywords and their corresponding lexical tokens in order to
distinguish between keywords and all other identifiers. Use the provided SymbolTable class for
this; you don't have to re-implement a symbol table from scratch. Initialize the table with the
keywords and their associated Symbol values in the Scanner constructor then use the table in
nextToken to decide if an identifier is in fact a keyword. The objects stored in the SymbolTable are
Symbols, keyed with the actual identifier string. So, for example, to store the keyword "if", your
constructor might do something like this:

 keywords.putSymbol(0,"if",new Symbol("if",Token.KW_IF));

CSE 413 – AU 04 – Programming Languages Homework 6

 Page 3 of 4

This assumes that there is an instance variable "keywords" that has a reference to the SymbolTable
object provided to the constructor.

java class Token

You are provided with a Token class. The Token class includes a field to store the lexical class of
the specific Token object (id, integer, lparen, ...). Class Token includes an appropriate symbolic
constant name (static final int) for each lexical class.

Tokens for identifiers and numeric literals contain additional information: the String representation
of the identifier or the numeric value of the integer or real.

Objects of class Token are returned from the Scanner in response to calls to its nextToken method.
These objects form the interface between the Scanner and the Parser.

java class Symbol

You are provided with a Symbol class. The Symbol class includes a label and a type, plus a hash
map to store a list of attributes if needed. In the Scanner, you will create a simple Symbol object
for each keyword defined by the language with its associated Token type and store it in the symbol
table, as shown above. When your Scanner recognizes an identifier, it will look it up in the symbol
table. If the identifier is defined, then it is a keyword, and it will return the proper token. If it is not
defined, then the Scanner will return a Token of type Token.ID.

java class ScanTest

There is a simple test program included in the homework download. The test program uses the
CompilerIO class from the previous assignment for line-oriented input and output operations that
read and write the input and output files. The test program uses your Scanner class to read an fm
source program and prints the resulting Tokens to the output file.

Source program lines are echoed to the output file as they are read, to make it easier to see the
correlation between the source code and the tokens. Echoing of the input lines is handled
automatically by CompilerIO.

The homework download includes a solution for CompilerIO.java – you can use either this file or
the code that your wrote yourself for Homework #5.

Implementation

While Java provides classes StreamTokenizer and StringTokenizer (and, in 1.4, Pattern and
Matcher) to break input streams or Strings into tokens, for this assignment you must implement the
scanner without them. Your scanner should examine the source program one character at a time and
decode the input into individual tokens manually.

CSE 413 – AU 04 – Programming Languages Homework 6

 Page 4 of 4

 The Java library provides several functions that you may find useful. Class Character contains
methods for classifying characters. Classes Integer and Double contain methods for parsing Strings
to create numeric values. The StringBuffer class is an efficient way to collect characters one by
one into a String.

Be sure your program is well written, formatted neatly, contains appropriate comments, etc. Be
careful to precisely specify the state of the scanner in comments describing variables, particularly
exactly how far the scan has progressed on the current line, where the next unprocessed character
is, and so forth. Use public and private to control access to information; be sure to hide
implementation details that should not be visible outside the scanner.

