
CSE 413 – Au 04 – Programming Languages Homework 3

 Page 1 of 4

DUE: Thursday October 21, 2004, 11:59 p.m.

All of the functions that you write for this homework should be defined in the same source file,
hw3.scm. Questions 4-5 are each worth about twice as much as each of Questions 1-3. Use helper
functions where appropriate to simplify your code.

As before, there are three steps to turning in your homework:
a.) Use the turnin link from the calendar page; follow the instructions and submit the file hw3.scm.
b.) Then complete the web survey that you are directed to.
c.) Print a copy of your hw3.scm and turn it in during class on Friday October 22. Write your
name and UW Net ID prominently on the first page.

1. Write a procedure (squares-up-to n) that takes one argument, a positive integer, and returns

a list of n values from 12 to n2.

2. Write a procedure (build-summer p) that takes a procedure p and returns a procedure that:

- takes one argument, a list m,
- applies procedure p to every number in the list m,
- and returns the sum of the result of applying procedure p to every number in the list.
Example: ((build-summer cube) (list 1 2 3)) � (1 + 8 + 27) = 36
You need not necessarily execute the steps in the order given above, but your function must
produce the same result as if you had.

3. Write a procedure (delete k m) that takes a single number k and a list of numbers m and
returns a list with all occurrences of k deleted.

4. A mobile consists of one or more branches. Each branch is a rod of length 0 or more from which

hangs either a weight or another mobile. Each branch is attached to the root of the mobile at an
angle from 0 to 2π around the vertical axis. For instance, mobile m1 (see figure later) has two
branches, one at an angle of 0 degrees and one at 180 degrees – from both branches hangs a single
weight. Mobile m3 also has two branches, but from each branch hangs another mobile. We can
represent a mobile with angles and branches using lists as follows:

The procedure new-mobile takes an argument list with an even number of entries. The first entry is
an angle, the second entry is a branch structure. There can be 1 or more pairs of arguments. The
resulting data structure is a list with two entries. The first entry is a list of angles, the second entry
is a list of branch structures. Take a moment to understand how the following procedure works:

(define (new-mobile . v)
 (define (pick-list get-item get-next shrink)
 (if (null? shrink)
 '()
 (cons (get-item shrink) (pick-list get-item get-next (get-next shrink)))))
 (list (pick-list car cddr v) (pick-list cadr cddr v)))

(continued)

CSE 413 – Au 04 – Programming Languages Homework 3

 Page 2 of 4

A branch is constructed from a length (which must be a number greater than or equal to 0) together
with a structure, which may be either a number (representing a simple weight) or another mobile:

(define (new-branch length structure)
 (list length structure))

a. Write procedures (angle-list m) and (branch-list m) that return the list of angles and the list of
branch structures from a mobile m. This is easy if you understand the data structure.

b. Write procedures (length b) and (structure b) that return the length value and the structure value

(either a weight or a mobile) from a branch b.

c. Write procedures (branch-weight b) and (mobile-weight m) that return the
weight of a branch b or a mobile m. Note that these two procedures call each other as needed,
depending on the structure of the mobile.

Details: the weight of a mobile is the sum of the weights of its branches. For a branch, it
depends on whether the structure is a plain weight or a mobile (how can you tell?). For a plain
weight, then the weight is just the weight given. If it is a mobile, then the weight of the branch
is the total weight of the mobile.

5. A mobile is said to be balanced if the torque applied by all its branches sums to zero in all
directions. This is true if (1) the sum over all attached branches of [rod length multiplied by the
total weight hanging from that rod multiplied by sin(attachment angle)] is very close to zero, and
(2) the sum over all attached branches of [rod length multiplied by the total weight hanging from
that rod multiplied by cos(attachment angle)] is very close to zero, and (3) each of the mobiles
hanging off its branches is balanced. A branch with a plain weight is always balanced. A branch
with a mobile is balanced if that mobile is balanced.

Write a predicate (mobile-balanced? m) that tests whether a mobile m is balanced. It will
be helpful to write a helper function branch-balanced? that interacts with mobile-
balanced? to determine the balance of a branch.

CSE 413 – Au 04 – Programming Languages Homework 3

 Page 3 of 4

These show some of the mobiles from hw3-test-it.scm, viewed from above:

5

5

5

m7

10

1
0

10

m4

105

m1

10

10

10

m2

1
0

5

10

10

10

m3

CSE 413 – Au 04 – Programming Languages Homework 3

 Page 4 of 4

Output of hw3-test-it.scm

Welcome to DrScheme, version 208.
Language: Standard (R5RS).
squares-up-to
(squares-up-to 1) => (1) : (1)
(squares-up-to 5) => (1 4 9 16 25) : (1 4 9 16 25)
build-summer
((build-summer cube) (list 0 1 2 3)) => 36 : 36
((build-summer (lambda (x) (expt 2 x))) (list 0 1)) => 3 : 3
((build-summer identity) (list 1 2 3 4 5 6 7)) => 28 : 28
delete
(delete 1 (list 1)) => () : ()
(delete 1 (list 1 1 1)) => () : ()
(delete 1 (list 1 2 3)) => (2 3) : (2 3)
(delete 1 (list 2 3 4)) => (2 3 4) : (2 3 4)
(delete 1 (list 3 2 1)) => (3 2) : (3 2)
mobiles
(branch-weight b1) => 10 : 10
(branch-weight b2) => 5 : 5
(mobile-weight m1) => 15 : 15
(mobile-weight m2) => 30 : 30
(branch-weight b2.1) => 15 : 15
(branch-weight b2.2) => 30 : 30
(mobile-weight m3) => 45 : 45
(branch-balanced? b1) => #t : #t
(branch-balanced? b2) => #t : #t
(branch-balanced? b3) => #t : #t
(branch-balanced? b4) => #t : #t
(branch-balanced? b5) => #t : #t
(mobile-balanced? m1) => #t : #t
(mobile-balanced? m2) => #t : #t
(branch-balanced? b2.1) => #t : #t
(branch-balanced? b2.2) => #t : #t
(mobile-balanced? m3) => #t : #t
(mobile-balanced? m4) => #f : #f
(mobile-balanced? m5) => #f : #f
(branch-balanced? b2.3) => #t : #t
(branch-balanced? b2.4) => #f : #f
(branch-balanced? b2.5) => #f : #f
(mobile-balanced? m6) => #f : #f
(mobile-balanced? m7) => #t : #t
>

