
Introduction to Java 1

2/8/2002 Introduction to Java - CSE 413 Wi02 1

CSE 413 Winter 2002

Introduction to Java
Hal Perkins

2/8/2002 Introduction to Java - CSE 413 Wi02 2

Goals
• Survey of major Java language and library

features
• Orientation – not comprehensive

• No way anyone actually understands all of the
libraries(!)

• Part of the job of learning a new language/
environment is to learn how to find information

• Ask lots of questions!

2/8/2002 Introduction to Java - CSE 413 Wi02 3

Overview
• A bit of history
• Classes and objects
• Core Java language
• Collection classes
• Class relationships – inheritance and interfaces
• Packages & scope
• Exception handling
• GUI basics (AWT & Swing)
• Threads

Introduction to Java 2

2/8/2002 Introduction to Java - CSE 413 Wi02 4

References (1)
• Way too many to count. Here are a couple of

useful places to start (i.e., I’ve found them useful)
• From Sun

• Java SDK and documentation (java.sun.com)
• The Java Tutorial (A-W). Online at

http://java.sun.com/docs/books/tutorial/index.html
(Good “how to do it” topic orientation)

• The Java Programming Language by Arnold, Gosling,
and Holmes (A-W, 3rd edition)
(Language and container classes primarily)

2/8/2002 Introduction to Java - CSE 413 Wi02 5

References (2)
• Overview of Object-Oriented Programming

• Understanding Object-Oriented Programming with
Java by Tim Budd (Addison-Wesley)

• Longer tutorial on language and libraries
• Learning Java by Niemeyer & Knudsen (O’Reilly)

• Look-it-up references
• Java in a Nutshell (core language and libraries)
• Java Foundation Classes in a Nutshell (AWT, Swing)
• Java Examples in a Nutshell

all by David Flanagan (O’Reilly)

2/8/2002 Introduction to Java - CSE 413 Wi02 6

Some History
• 1993 Oak project at Sun
• 1995 Oak becomes Java; web happens
• 1996 Java 1.0 available
• 1997 (March) Java 1.1 - some language changes, much

larger library, new event handling model
• 1997 (September) Java 1.2 beta – huge increase in

libraries including Swing, new collection classes, J2EE
• 1998 (October) Java 1.2 final (Java2!)
• 2000 (April) Java 1.3 final
• early 2002 Java 1.4 final (assert)
• 2002-2003 Java 1.5 (parameterized types?)

Introduction to Java 3

2/8/2002 Introduction to Java - CSE 413 Wi02 7

Design Goals
• Support secure, high-performance, robust

applications running as-is on multiple platforms
and over networks

• “Architecture-neutral”, portable, allow dynamic
updates and adapt to new environments

• Look enough like C++ for programmer comfort
• Support object-oriented programming
• Support concurrency (multithreading)
• Simplicity

2/8/2002 Introduction to Java - CSE 413 Wi02 8

Hello World in Java

public class HelloWorld {
public static void main (String [] args) {
System.out.println(“Hello World”);
}

}

2/8/2002 Introduction to Java - CSE 413 Wi02 9

It’s all about objects
• Java is a purely object-oriented language

(well, almost)

• Fundamental unit of a program is a class
• Instances of classes are objects

• May be helpful to think of objects receiving messages
and replying to them instead of calling methods and
returning values

• Java includes an incredibly rich set of libraries

Introduction to Java 4

2/8/2002 Introduction to Java - CSE 413 Wi02 10

Classes
• Everything in Java is a member of some class

• No external (global) functions or variables

• Classes may contain methods and data members
• Class members may be

• non-static: one copy for each instance of the class
(one copy per object)

• static: single copy associated with the class, not with
any specific instances.

2/8/2002 Introduction to Java - CSE 413 Wi02 11

Hello World Revisited
public class HelloWorld {

public static void main (String [] args) {
System.out.println(“Hello World”);

}
}

• Every class may have a main method
• Execution begins in main of a designated class
• Class Xyzzy should be in file Xyzzy.java

%javac HelloWorld.java
%java Helloworld
Hello World

2/8/2002 Introduction to Java - CSE 413 Wi02 12

Command Line Arguments
(if you like this sort of thing – useful for things like file names)

public class PrintArgs {
public static void main (String [] args) {
for (int k=0; k < args.length; k++)

System.out.print(args[k] + “ ”);
System.out.println();

}
}

%javac PrintArgs.java
%java PrintArgs Testing one, two, three
Testing one, two, three

Introduction to Java 5

2/8/2002 Introduction to Java - CSE 413 Wi02 13

Primitive Data Types
• 2’s complement signed integer

• int (32 bits), byte (8), short (16), long (64)
• int constants are normally type int

• IEEE floating point
• double (64 bits), float (32)
• floating constants are normally type double

• Unicode characters: char (16 bits)
• Logical: boolean

• constants are true, false
• not ints

• None of these are “implementation-defined” or
“implementation-dependent”

2/8/2002 Introduction to Java - CSE 413 Wi02 14

Arithmetic and assignment
• Almost same as C/C++

int k = 17; boolean maybe; double x=42.0
k = 2 * k; maybe = k > 17;

• Declaration initializers are optional. If omitted,
• Fields in class instances initialized to 0, false, null.
• Local vars in methods not initialized by default; compiler

complains if use before initialization is possible

• Automatic coercion if no information lost
double y = k + 6;

• Explicit cast required to indicate possible information
loss is intended

k = (int) (x * 1.3 / (x-2.0))

2/8/2002 Introduction to Java - CSE 413 Wi02 15

Basic statements (1)
• if, while, for, and switch work as in C/C++

if (x < y) {
tmp=x; x=y; y=tmp;

} else {
x=0;

}
while (k < n && a[k] != x) {

k++;
}

• Use { } to create compound statements
• Creates a new scope
• Style point – always use these

Introduction to Java 6

2/8/2002 Introduction to Java - CSE 413 Wi02 16

Basic statements (2)
• Logical && and || are short-circuit
• switch requires explicit break if fall-through to

next case is not desired; if default case is not
provided and no case label matches, execution
silently proceeds with next statement.

2/8/2002 Introduction to Java - CSE 413 Wi02 17

Class Definitions
• Basic use is to define template for instances

/** Simple, tiny example class
* @author Al Gaulle
* @version 6068 */
public class Blob {

private int val; // Blob state
/** construct new Blob with given initial value */
public Blob(int val) {

this.val = val;
}

• /** .. */ comments are JavaDoc comments; JavaDoc processor
generates API docs (html) automatically from this information

2/8/2002 Introduction to Java - CSE 413 Wi02 18

Class Definitions (continued)
/** Set the value of this blob

* @param val new value for this blob */
public void setVal(int val) { this.val = val; }
/** Access this Blob’s value
* @return current value of this blob */

public int getVal () { return val; }
/** yield string representation of this Blob */
public String toString()

{ return “Blob: val = ” + val; }
}

• toString() automatically used to cast object to String
when used in context that requires it
System.out.println(theBlob);

Introduction to Java 7

2/8/2002 Introduction to Java - CSE 413 Wi02 19

Constructors
• Constructor(s) can be provided to initialize

objects when they are created. Constructors can
be overloaded and can delegate to other
constructors.

class Blob {
private int val;
/** construct Blob with given initial value */
Blob (int initial) { val = initial; }
/** construct Blob with default initial value */
Blob () { this(17); }
…

2/8/2002 Introduction to Java - CSE 413 Wi02 20

Instance Creation and References
• Except for primitive types (int, double, boolean,

char, etc) all variables are references. Objects
are only created by explicit allocation on the heap
(with new).

Blob bob; // no blob allocated yet
bob = new Blob(); // Blob allocated here
bob.setVal(42);
int k = bob.getVal();
System.out.println(“bob is ” + bob);

2/8/2002 Introduction to Java - CSE 413 Wi02 21

References and Methods
• Dot notation is used to select methods and fields; implicit

dereference (no -> as in C/C++).
• No pointer arithmetic; no & operator to generate the

address of arbitrary variable; can’t create pointers from
random bits.
• “Java has no pointers”

• All method parameters are call-by-value (copy of
primitive value or object reference)

• Methods can be overloaded (different methods with
same name but different number or types of
parameters).

Introduction to Java 8

2/8/2002 Introduction to Java - CSE 413 Wi02 22

Object References
• A variable declared as class X has type “reference to X”.

No object is created by such a declaration.
• Declaration and object creation can be combined.

Blob bob = new Blob();

• The constant null belongs to all reference types and
refers to nothing.

• If reference r is null, then selecting a field or method from
r (r.fieldname) throws a NullPointerException.

• Storage occupied by an object is dynamically reclaimed
when the object is no longer accessible (automatic
garbage collection).

2/8/2002 Introduction to Java - CSE 413 Wi02 23

Visibility
• Class members can be preceded by a qualifier to

indicate accessibility
• public - accessible anywhere the class can be

accessed
• private - only accessible inside the class
• If nothing is specified, the field can be referenced

anywhere in the same package (more later).
• protected - same as package visibility, and also visible

in classes that extend this class.

2/8/2002 Introduction to Java - CSE 413 Wi02 24

Static Methods and Fields
• static class members are most commonly used

for data and methods that are not naturally
associated with a specific class instance.

class Math { // standard Java Math class
static double sqrt(double x) { … }
static double sin(double x) { … }

}

• Static methods are referenced via the class name
distance = Math.sqrt(x*x + y*y);

Introduction to Java 9

2/8/2002 Introduction to Java - CSE 413 Wi02 25

Symbolic Constants
• A class member may be qualified as final.

• For data, it means the variable must be initialized when
declared and cannot be changed after that.

• For methods, it means the method cannot be overridden in a
derived class.

• The compiler can take advantage of this to inline the constant
value or method code.

class Math { // standard Java Math class
static final double PI = 3.1415926535;
static final double E = 2.71828182845;

}
…
area = Math.PI * r * r;

2/8/2002 Introduction to Java - CSE 413 Wi02 26

Arrays
• Arrays are dynamically allocated. Declaring an

array variable only creates a reference variable; it
does not actually allocate the array.

double[] a;
a = new double[6]
for (int k = 0; k < 6; k++)

a[k] = 2*k;

2/8/2002 Introduction to Java - CSE 413 Wi02 27

Array Notes
• Arrays are 0-origin, as in C/C++
• Arrays are also objects, with one constant

member
• If a is an array, a.length is its length

• An IndexOutOfBoundsException is thrown if a
subscript is < 0 or >= the array length.

• The brackets indicating an array type may also
appear after the variable name, as in C/C++

int a[] = new int[100];

Introduction to Java 10

2/8/2002 Introduction to Java - CSE 413 Wi02 28

2-D Arrays
• A 2-D array is really a 1-D array of references to

1-D array rows. The allocation
double[][] matrix = new double[10][20];

is really shorthand for
double [] [] matrix = new double[10][];
for (int k = 0; k < 10; k++)

matrix[k] = new double[20];

• Array elements are accessed in the usual way
for (int r = 0; r < 10; r++)

for (int c = 0; c < 20; c++)
matrix[r][c] = 0.0;

2/8/2002 Introduction to Java - CSE 413 Wi02 29

Arrays of Objects
• If the array elements have an object type, the

objects must be created individually.
Blob [] list;
list = new Blob[10];
for (int k = 0; k < 10; k++)

list[k] = new Blob();

2/8/2002 Introduction to Java - CSE 413 Wi02 30

Strings
• A character string “abc” is an instance of class

String, and is a read-only constant.
• Strings are objects; they are not arrays of chars.
• There is no visible ‘\0’ byte at the end
• If s is a string, s.length() is its length, and

s.charAt(k) is the character in position k.
• Class String includes many useful string

processing functions (search, substring, …).
• + concatenates strings (“hello” + “ there”)

Introduction to Java 11

2/8/2002 Introduction to Java - CSE 413 Wi02 31

Derived Classes
• A class definition may extend (be derived from) a

single parent class (single inheritance).
class Point {

private int h, v; // instance vars
public Point(int x, int y) { h = x; v = y; } // constructor

}
class ColorPoint extends Point {

private Color c; // additional instance var
public ColorPoint(int x, int y, Color c) // constructor

{ super(x, y); this.c = c; }
}

2/8/2002 Introduction to Java - CSE 413 Wi02 32

Derived Classes (cont.)
• All of the usual object-oriented notions are

supported, including inheritance of fields and
methods from superclasses and overriding.

• Inside a method, this refers to the current
object; super refers to the current object
viewed as an instance of the parent class.

• There is a single class Object at the root of
the class hierarchy.
• If a class declaration does not explicitly extend some

class, it implicitly extends Object.

2/8/2002 Introduction to Java - CSE 413 Wi02 33

Abstract Classes
• An abstract class is one that contains an abstract

method or is declared to be abstract
abstract class ExtendMe {

…
public abstract mustOverride(…);

}

• A final class may not be extended further.

• Pop quiz: can a class be both final and abstract?

Introduction to Java 12

2/8/2002 Introduction to Java - CSE 413 Wi02 34

Wrapper Classes for Basic Types
• For each basic type (int, double, etc.) there is a

corresponding class (Integer, Double, etc.) that is
an object version of that type.

• Integer(17) is an object representation of the int
17.

• Particularly useful with container classes that can
only hold objects (ArrayList, HashTable, etc.)

• Wrapper classes also contain many useful utility
functions and constants.

if (k < (Integer.MAX_VALUE/10)) …
if (Character.isLowerCase(ch)) …

2/8/2002 Introduction to Java - CSE 413 Wi02 35

Interfaces
• Interfaces allow specification of constants and

methods independently of the class hierarchy.
• Interfaces may extend other interfaces, but since

they are pure specification, no implementation is
inherited.

interface AbsType {
static final int one = 1;
static final int two = 2;
void f(int a, int b);
double g();

}

2/8/2002 Introduction to Java - CSE 413 Wi02 36

Interfaces (cont)
• A class may implement as many interfaces as desired.
• Full implementation of all methods in the interface must

be provided by the class or inherited from a parent class.
Nothing is inherited from the interface.

• Gives most of the useful effects of multiple inheritance
• Allows otherwise unrelated classes to implement common

behavior

• Some interfaces are “markers” - identify classes that can
be used in certain contexts
• Widely used for event handling in the Java user interface

(MouseMotionListener, ActionListener, many others)

Introduction to Java 13

2/8/2002 Introduction to Java - CSE 413 Wi02 37

Interfaces and Abstract Types
• Both define a new type
• In real systems, any important type should be

defined by an interface
• Specifies the type without tying to an implementation

• Often, should provide a model implementation of
the interface in an abstract or concrete class

• Programmer has choice of implementing the
interface or using (maybe extending) the abstract
class

2/8/2002 Introduction to Java - CSE 413 Wi02 38

Container Classes
• The Java container classes are a good example

of the use of interfaces and classes
• Example: interface List – ordered list of objects

• operations: add(obj), size(), get(k), set(k,obj),
many, many more

• Implementations
• ArrayList – ordered list with O(1) access to elements
• LinkedList – ordered list implemented with doubly-

linked list

• Other kinds of collections: set, map (table), etc.

2/8/2002 Introduction to Java - CSE 413 Wi02 39

Iterators
• This generalizes the notion of

for (int k = 0; k < a.size; k++) { process a[k] }

• Collections provide an iterator() method, which
yields an object that provides element-by-element
access to items in the collection

ArrayList theList = new ArrayList();
//… code to fill theList omitted
Iterator it = theList.iterator();
while (it.hasNext()) {

Object o = it.next();
process o (may need to cast to specific element type)

}

Introduction to Java 14

2/8/2002 Introduction to Java - CSE 413 Wi02 40

Object Compare and Copy
• Default assignment and comparison only copies

or compares references (shallow operations)
Blob b = new Blob();
Blob c = new Blob();
if (b==c) {

System.out.println(“Something wrong”);
}
c = b;
b.setVal(100);
System.out.println(c.getval());

2/8/2002 Introduction to Java - CSE 413 Wi02 41

Defining Compare and Copy
• Intended meaning of a.equals(b) is that a and b are

“equal” in sense appropriate for the class of a and b.
• Tricky semantics if class is extended and fields are

added/overridden
• b.clone() should create a new “copy” of b and return a

reference to it.
• All classes inherit equals and clone from Object

• Default versions do a shallow compare/copy
• Override if a different compare/copy is desired
• To override clone, a class must also extend the Cloneable

interface (this is purely a marker interface, has no methods or
constants)

2/8/2002 Introduction to Java - CSE 413 Wi02 42

Exceptions
• Java has an extensive exception handling

mechanism. Basic idea
try {

thisMightExplode(x,y,z);
} catch (Exception e) {

<deal with the problem>
}

• To generate an exception, execute
throw new anExceptionClass(parameters);

to cause the call chain to unwind until a catch
clause that matches the thrown object is found.

Introduction to Java 15

2/8/2002 Introduction to Java - CSE 413 Wi02 43

Exceptions (cont)
• Multiple catch clauses can be used to selectively

handle exceptions
try {

tryToReadData(x,y,z);
} catch (IOException e) {

<deal with I/O problem>
} catch (Exception e) {

<deal with other exceptions>
}

• If a method does something that might generate
an exception, it must either handle it, or declare
that it might throw that exception (throws clause).

2/8/2002 Introduction to Java - CSE 413 Wi02 44

Exceptions (cont)
• Classes of exceptions

• Checked: things like IOException that result if an
operation does not complete successfully

• Unchecked: things that indicate programming errors
or system failure (IndexOutOfBoundsException,
NullPointerException)

• If a method does something that might generate a
checked exception, it must either handle it, or
declare that it might throw that exception (throws
clause).

2/8/2002 Introduction to Java - CSE 413 Wi02 45

Packages
• Packages provide a way to partition the global class

namespace.
• A class is placed in a package by including at the

beginning of the class source file
package widget;

• A class in another package can use items from a
package by explicitly qualifying the item name

widget.Blob b = new widget.Blob();

or by importing names from the package
import widget.*;
…
Blob b = new Blob();

Introduction to Java 16

2/8/2002 Introduction to Java - CSE 413 Wi02 46

Packages (cont)
• Package names are grouped into hierarchies by using

package names with embedded dots
java.util, java.awt, java.awt.event

• import is not transitive (unlike C/C++ #include)
• import only opens scope of given package, not

subpackages
• If a class definition does not include a package

statement, that class is part of a default anonymous
package.
• Useful for small projects (like homework assignments)
• Good simplification – particularly because some programming

environments require that the source code directory structure
reflects the subpackage structure

2/8/2002 Introduction to Java - CSE 413 Wi02 47

Some Standard Library Packages
• java.lang – core classes (Math, String, System,

Integer, Character, etc.)
• Imported automatically

• java.util – collections, date/time, random numbers
• java.io – input/output streams, files
• java.net – network I/O, sockets, URLs
• java.awt – basic (original) graphical user interface
• java.awt.event – GUI event handling
• javax.swing – sophisticated newer GUI built on

top of AWT

2/8/2002 Introduction to Java - CSE 413 Wi02 48

Streams
• Stream = flow of data (bytes or characters)
• Can be associated with files, communication

links, keyboard/screen/printer
• Many stream classes; most are designed to be

used as wrappers that accept data and transform
or filter it before passing it along

• Java 1.0: Byte streams with a few wrappers to
handle ASCII text

• Java 1.1: Added text streams to handle Unicode
properly

Introduction to Java 17

2/8/2002 Introduction to Java - CSE 413 Wi02 49

Stream Abstract Classes
• Byte streams: InputStream, OutputStream
• Character streams: Reader, Writer
• All Java stream classes are extensions of these

(directly or indirectly)
• There are wrapper classes to convert between

these
• Historical note: console I/O streams (System.in,

System.out, System.err) existed in Java 1.0, so these
are InputStreams and OutputStreams, even though
they really should be Readers and Writers

2/8/2002 Introduction to Java - CSE 413 Wi02 50

Basic Reader/Writer Operations
• Reader

int read(); // next Unicode character or –1 if EOF
int read(char[] cbuf); // read up to array capacity

• All can throw IOExceptions

• Writer
int write(int c); // write character
int write(char[] cbuf); // write array of characters

2/8/2002 Introduction to Java - CSE 413 Wi02 51

FileStreams for Text
• Basic Classes: FileReader, FileWriter
• Several constructors

• Open file with filename
• Open file with File object

Introduction to Java 18

2/8/2002 Introduction to Java - CSE 413 Wi02 52

Low-Level File Copy
class TediousCopy {

public static void main(String[] args) throws IOException {
FileReader inFile = new FileReader(“input.txt”);
FileWriter outFile = new FileWriter(“copy.txt”);
int ch; // current character
ch = inFile.read();
while(ch != -1) {

outFile.write(ch);
ch = inFile.read();

}
inFile.close();
outFile.close();

}

2/8/2002 Introduction to Java - CSE 413 Wi02 53

Buffered Input and Output
• Wrapper classes – data read from or written to basic

source/sink stream objects; the wrapper objects
transform the stream

• Classes available to handle newlines transparently
• BufferedReader – method ReadLine()

• Returns string with next line of input, or null if EOF

• PrintWriter – methods print and println
• Overloaded for primitive types and String
• println emits end-of-line appropriate for host system after data

written

2/8/2002 Introduction to Java - CSE 413 Wi02 54

Example: Copy Text Files (1)
// open input file
FileReader infile;
try {

inFile = new FileReader(“c:\\input.txt”);
} catch (IOException e) {

System.err.println(“Input file ouch: ” + e);
}
BufferedReader in = new BufferedReader(inFile);

• Gotcha: need to use command line arguments or
JFileDialog or something to avoid system-dependent
file names in code

Introduction to Java 19

2/8/2002 Introduction to Java - CSE 413 Wi02 55

Example: Copy Text Files (2)
// open input file
FileWriter outfile;
try {

inFile = new FileWriter(“copy.txt”);
} catch (IOException e) {

System.err.println(“Output file ouch: ” + e);
}
PrintWriter out = new PrintWriter(outFile);

2/8/2002 Introduction to Java - CSE 413 Wi02 56

Example: Copy Text Files (3)
try {

String line = in.readLine();
while (line != null) {

out.println(line);
line = in.readLine();

}
} catch (IOException e) {

System.err.println(“ouch while copying: ” + e);
} finally {

in.close();
out.close();

}

2/8/2002 Introduction to Java - CSE 413 Wi02 57

User Interfaces – AWT and Swing
• AWT – original GUI

• Heavyweight objects – each AWT object (button,
label, window) had corresponding native GUI object

• Incomplete and awkward to program in places

• Swing – new GUI in Java 2 (JDK 1.2)
• Lightweight components – everything except top-level

windows implemented in Java
• Extends AWT; keeps the Java 1.1 AWT event model
• Much more complete library

Introduction to Java 20

2/8/2002 Introduction to Java - CSE 413 Wi02 58

Components & Containers
• Every AWT/Swing class ultimately extends

Component
• Contains dozens of basic methods

• Some components are containers – can contain
other (sub-)components

• Top-level containers: JFrame, JDialog, JApplet
• Mid-level containers: JPanel, scroll panes, tool

bars, …
• Basic components: JButton, JLabel, text fields,

check boxes, lists, file choosers, …

2/8/2002 Introduction to Java - CSE 413 Wi02 59

A Simple Swing Application
import java.awt.*;
import javax.swing.*;
// free-standing application w/Window
public class App extends JFrame {

public void paintComponent(Graphics g) {
redraw screen when requested by window manager

}
…
// main program -- create window etc.
Public static void main(String args[]){

App frame = new App();
set up frame
frame.setVisible(true);
continue processing

}

2/8/2002 Introduction to Java - CSE 413 Wi02 60

Java Application Notes
• paintComponent(Graphics g) is called by the

window manager as needed, i.e., asynchronously
• Graphics parameter is the drawing context object;

supports drawing methods
g.setColor(Color.Blue);
g.drawOval(40,30,100,150);

• Component can request redrawing by calling
repaint()
• Causes window manager to perform repaint when

convenient for underlying windowing system

Introduction to Java 21

2/8/2002 Introduction to Java - CSE 413 Wi02 61

Event Handling
• User interface components generate events
• Objects (often other components) can register

themselves to receive events of interest
• When an event happens, an appropriate method

is called in all listeners (all registered objects)
• A listener object must implement the interface

corresponding to the events, which means
implementing all methods declared in the
interface

• Need import java.awt.event.*;

2/8/2002 Introduction to Java - CSE 413 Wi02 62

Example: Track Mouse
Public class TrackMouse extends JFrame

implements MouseMotionListener {
// instance variables
int locX = 100; // last mouse location
int locY = 100;

// constructor - register this object
// to receive mouse move events
public TrackMouse() {

addMouseMotionListener(this);
}

...

2/8/2002 Introduction to Java - CSE 413 Wi02 63

Example: Track Mouse (cont)
// MouseMotionListener methods
public void MouseMoved() { }

public void MouseDragged(MouseEvent e){
locX = e.getX();
locY = e.getY();
repaint();

}

// repaint screen
public void paintComponent(Graphics g){

g.drawString(“Here!”,locX,locY);
}

Introduction to Java 22

2/8/2002 Introduction to Java - CSE 413 Wi02 64

Example: Button
• Most user-interface components need to be

allocated, added to an appropriate container, and
interested objects need to register to receive
events.

Public class WatchButton extends JFrame
implements ActionListener {

// instance variables
JButton belly; // the button
...

2/8/2002 Introduction to Java - CSE 413 Wi02 65

Example: Button (cont)
// constructor - create button, add to this Frame
// and register this object as a listener
public WatchButton() {

belly = new JButton(“press me”);
getContentPane().add(belly);
belly.addActionListener(this);

}
...

2/8/2002 Introduction to Java - CSE 413 Wi02 66

Example: Button (concl)
// react to button press
public ActionPerformed(ActionEvent e) {
if (e.getSource()==belly){

respond to button press
}

} ...

• The test isn’t strictly necessary if we know that belly is
the only button that could generate the event

• Many other UI components (text boxes, dials, …)
generate similar events. The event object contains
details of the event (source, kind, data values, locations,
etc.).

Introduction to Java 23

2/8/2002 Introduction to Java - CSE 413 Wi02 67

Layout Managers
• A Layout Manager is associated with every Container.

The layout manager is responsible for positioning
components in the container when the container is
redrawn.

• Basic layout manager classes
• FlowLayout - arranges components from left to right, top to

bottom. Nothing Fancy
• GridLayout - regularly spaced rows and columns
• BorderLayout - Components can be placed in the Center,

North, South, East, or West.
Useful trick: to place several controls in one of these places, create a

Panel containing the controls, then place the Panel in one of the 5
BorderLayout locations.

• GridBagLayout - General constraint layout.

2/8/2002 Introduction to Java - CSE 413 Wi02 68

Layout Manager Example
• In the constructor for a Container

public SomeContainer() extends ... {
…
/** Construct new container */
public SomeContainer() {

JButton c = new JButton(“cold”);
JButton w = new JButton(“warm”);
setLayout(new BorderLayout());
add(c, BorderLayout.CENTER);
add(w, BorderLayout.SOUTH);
...

}
}

• Also need to add listeners for the buttons, etc.

2/8/2002 Introduction to Java - CSE 413 Wi02 69

Threads
• Thread = Execution of one sequence of

instructions (including function/method calls,
conditionals, loops).

• Normal Java program executes in a thread
created for main (application) or borrowed from
the browser (applets).

• Class Thread can be used to create additional
threads that execute concurrently.

• Each new thread is associated with (controlled
by) a Thread object.

Introduction to Java 24

2/8/2002 Introduction to Java - CSE 413 Wi02 70

Single Thread Example
class Foo {

void run() {
for (int i=0; i<100; i++)

System.out.println(“foo ”);
}

}
class Bar {

public static void main(char[]args) {
Foo foo = new Foo();
foo.run();
for (int i=0; i<100; i++)

System.out.println(“bar ”);
}

}
• Prints 100 “foo”s followed by 100 “bar”s

2/8/2002 Introduction to Java - CSE 413 Wi02 71

Extending Class Thread
• Class Thread can be extended to create objects

that run concurrently in their own thread.
• Execution begins in method run of the new class.

class Foo extends Thread {
void run() {
for (int i=0; i<100; i++)

System.out.println(“foo ”);
}

}

• Foo.run overrides a (basically) empty method run
in class Thread.

2/8/2002 Introduction to Java - CSE 413 Wi02 72

Concurrent Execution
• To begin concurrent execution, call method start of a

Thread object. This sets up the new thread, then calls
the object’s run method.

class Bar {
public static void main(char[]args) {
Foo foo = new Foo();
foo.start();
for (int i=0; i<100; i++)

System.out.println(“bar ”);
}

}

• Prints 100 “foo”s and 100 “bar”s in some unpredictable
order

Introduction to Java 25

2/8/2002 Introduction to Java - CSE 413 Wi02 73

Uses for Threads
• Asynchronous or nonblocking I/O

• Continue execution in one thread while waiting for I/O to
complete or time out in another.

• Timers
• Wait for an interval to expire, then cause something to happen

(examples: animations; do something if the user doesn’t
respond after a reasonable interval, …)

• Process multiple tasks simultaneously
• Handle GUI in one thread while doing extended calculations in

another.
• Parallel algorithms

• If the JVM supports it, run parts of the computation
concurrently on different processors.

2/8/2002 Introduction to Java - CSE 413 Wi02 74

Runnable Classes
• There are many situations where we want to

execute a computation concurrently, but in a
class that’s not a subclass of Thread.

• We still need a Thread object to create and
control the thread.

• A thread can begin execution in any class that
implements Runnable and contains a run
method.

public interface Runnable {
public abstract void run();

}

2/8/2002 Introduction to Java - CSE 413 Wi02 75

Using Runnable
• This class executes one of its methods in a separate

thread
class FooBar implements Runnable {

public void foo() {
for (int i=0; i<100; i++)

System.out.println(“foo ”);
}
public void bar() {
for (int i=0; i<100; i++)

System.out.println(“bar ”);
}
public void run() {
foo();

}
…

Introduction to Java 26

2/8/2002 Introduction to Java - CSE 413 Wi02 76

Using Runnable (cont.)
public static void main(char[]args) {
FooBar fb = new Foobar();
Thread t = new Thread(fb);
t.start();
bar();
}

}

• t.start() creates a new thread, then executes run()
in that thread.

• Meanwhile, the original thread calls bar().
• Prints 100 “foo”s and 100 “bar”s in some

unpredictable order

2/8/2002 Introduction to Java - CSE 413 Wi02 77

Synchronization
• Since threads may interleave execution in any order, we

may need to control access to objects to ensure only one
thread at a time can update related variables.

class C {
int x,y;
public void setXY(int x, int x) {
this.x = x;
this.y = y;

}
public int sumXY() { return x+y; }

}

• What happens if one thread executes sumXY while
another thread is halfway through executing setXY on
the same object?

2/8/2002 Introduction to Java - CSE 413 Wi02 78

synchronized methods
• Every object has an associated lock
• We can require threads to acquire the lock before

executing one of the object’s methods by
declaring the method to be synchronized.

• A synchronized method automatically acquires
the object’s lock when it is called. Other threads
are blocked until the lock is released
automatically when the synchronized method
terminates.

Introduction to Java 27

2/8/2002 Introduction to Java - CSE 413 Wi02 79

synchronized methods
class C {

int x,y;
public synchronized void setXY(int x, int x) {
this.x = x; this.y = y;

}
public synchronized int sumXY() { return x+y; }

}

• If some thread is executing setXY or sumXY, no other
thread can execute either of those methods until the first
thread releases the lock.

• Methods wait and notify are available to temporarily
release the lock and regain it as needed.

2/8/2002 Introduction to Java - CSE 413 Wi02 80

Fini

