Parsing

CSE 413, Autumn 2002
Programming Languages

http://www.cs.washington.edu/education/courses/413/02au/
Parse Tree Example

\[
\begin{align*}
W & \rightarrow \text{a = 1 ; if (a + 1) b = 2 ;} \\
program & ::= \text{statement | program statement} \\
statement & ::= \text{assignStmt | ifStmt} \\
assignStmt & ::= \text{id = expr ;} \\
ifStmt & ::= \text{if (expr) stmt} \\
expr & ::= \text{id | int | expr + expr} \\
Id & ::= \text{a | b | c | i | j | k | n | x | y | z} \\
\text{int} & ::= \text{0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9}
\end{align*}
\]
Common Orderings

• Top-down
 » Start with the root
 » Traverse the parse tree depth-first, left-to-right (leftmost derivation)
 » LL(k)

• Bottom-up
 » Start at leaves and build up to the root
 Effectively a rightmost derivation in reverse
 » LR(k) and subsets (LALR(k), SLR(k), etc.)
Bottom-Up Parsing

• Idea: Read the input left to right
• Whenever we’ve matched the right hand side of a production, reduce it to the appropriate non-terminal and add that non-terminal to the parse tree
• The upper edge of this partial parse tree is known as the frontier
LR(1) Parsing

- Left to right scan
- Rightmost derivation
- 1 symbol lookahead
- Most practical programming languages have an LR(1) grammar
- LALR(1), SLR(1), etc. – subsets of LR(1)
Basic Parsing Strategies

• Bottom-up
 » Build up tree from leaves
 Shift next input or reduce using a production
 Accept when all input read and reduced to start symbol of the grammar
 » LR(k) and subsets (SLR(k), LALR(k), …)
Example

- Grammar

\[S ::= a A B e \]
\[A ::= A b c \mid b \]
\[B ::= d \]

- Bottom-up Parse

\[
\begin{aligned}
& a \quad b \quad b \quad c \quad d \quad e \\
\end{aligned}
\]
Details

- The bottom-up parser reconstructs a reverse rightmost derivation
- Given the rightmost derivation
 \[S \Rightarrow \beta_1 \Rightarrow \beta_2 \Rightarrow \ldots \Rightarrow \beta_{n-2} \Rightarrow \beta_{n-1} \Rightarrow \beta_n = w \]
 parser will discover \(\beta_{n-1} \Rightarrow \beta_n \), then \(\beta_{n-2} \Rightarrow \beta_{n-1} \), etc.
- Parsing terminates when
 » \(\beta_1 \) reduced to \(S \) (success), or
 » No match can be found (syntax error)
How Do We Automate This?

• Key: given what we’ve already seen and the next input symbol, decide what to do.

• Choices:
 » Perform a reduction (ie, reduce)
 » Look ahead further (ie, shift)

• Can reduce $A \Rightarrow \beta$ if both of these hold:
 » $A \Rightarrow \beta$ is a valid production
 » $A \Rightarrow \beta$ is a step in this rightmost derivation

• This is known as a *shift-reduce* parser
Implementing Shift-Reduce Parsers

• Key Data structures
 » A stack holding the frontier of the tree
 » A string with the remaining input
Shift-Reduce Parser Operations

- **Shift** – push the next input symbol onto the stack
- **Reduce** – if the top of the stack is the right side of a handle $A::=\beta$, pop the right side β and push the left side A.
- **Accept** – announce success
- **Error** – syntax error discovered
Shift-Reduce Example

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>abbcde$</td>
<td>shift</td>
</tr>
</tbody>
</table>

- $S ::= aABe$
- $A ::= Abc \mid b$
- $B ::= d$
How Do We Automate This?

• Definition
 » Viable prefix – a prefix of a form that can appear on the stack of the shift-reduce parser

• Construct a DFA to recognize viable prefixes given the stack and remaining input
 » Perform reductions when we recognize them

• Most compiler building tools are based on this design and implement LR parsing using a DFA constructed from a set of grammar productions
Basic Parsing Strategies

• Top-Down
 » Begin at root with start symbol of grammar
 » Repeatedly pick a non-terminal and expand
 » Success when expanded tree matches input
 » LL(k)
LL(k) Parsers

- An LL(k) parser
 - Scans the input left to right
 - Constructs a leftmost derivation
 - Looking ahead at most k symbols

- 1-symbol look ahead is enough for many practical programming language grammars
Top-Down Parsing

• Situation: have completed part of a derivation
 \[S \Rightarrow^* wA\alpha \Rightarrow^* wxy \]

• Basic Step: Pick some production
 \[A ::= \beta_1 \beta_2 \ldots \beta_n \]
 that will properly expand \(A \)
to match the input
 » Want this to be deterministic
Predictive Parsing

• If we are located at some non-terminal A, and there are two or more possible productions

$$A ::= \alpha$$

$$A ::= \beta$$

we want to make the correct choice by looking at just the next input symbol

• If we can do this, we can build a *predictive parser* that can perform a top-down parse without backtracking
Example

- Programming language grammars are often suitable for predictive parsing
- Common situation

\[stmt ::= id = expr \mid return expr \mid if \ (expr \) stmt \mid while \ (expr \) stmt \]

If the first part of the unparsed input begins with the tokens

IF LPAREN ID(x) …

we know we can expand \(stmt \) to an if-statement
LL(1) Property

• FIRST(\(\alpha\))
 » the set of tokens that appear as the first symbols of one or more strings generated from \(\alpha\)
 » for example, from preceding slide: FIRST(stmt) = \{Token.ID, Token.KW.Return, Token.KW_IF, Token.KW WHILE\}

• A grammar has the LL(1) property if,
 » for all non-terminals \(A\), if productions \(A ::= \alpha\) and \(A ::= \beta\) both appear in the grammar, then FIRST(\(\alpha\)) \cap FIRST(\(\beta\)) = \emptyset

• If a grammar has the LL(1) property, we can build a predictive parser for it
Table-Driven LL(k) Parsers

• A table-driven parser can be constructed from the grammar (also true for LR(k))

• Example
 1. \(S ::= (S) S \)
 2. \(S ::= [S] S \)
 3. \(S ::= \varepsilon \)

• Table

\[
\begin{array}{cccc}
S & (& [& $ \\
1 & 3 & 2 & 3 & 3
\end{array}
\]

\(w: ([]) $ \)
LL vs LR

- Table-driven parsers for both LL and LR can be automatically generated by tools
- LL(1) has to make a decision based on a single non-terminal and the next input symbol
- LR(1) can base the decision on the entire left context as well as the next input symbol
- \(\therefore \) LR(1) is more powerful than LL(1)
 - » Includes a larger set of grammars
 - » but LL(1) is sufficient for many languages
Recursive-Descent Parsers

• An advantage of top-down parsing is that it is easy to implement by hand

• Key idea: write a function (procedure, method) corresponding to each non-terminal in the grammar
 » Each of these functions is responsible for matching its non-terminal with the next part of the input
Example: Statements

- Grammar

\[
stmt ::= id = expr ;
| return expr ;
| if (expr) stmt
| while (expr) stmt
\]

```java
// parse stmt ::= id=exp; | ...
void parseStmt( ) {
    switch(nextToken.getType()) {
    case Token.ID:
        parseAssignStmt(); break;
    case Token.KW_RETURN:
        parseReturnStmt(); break;
    case Token.KW_IF:
        parseIfStmt(); break;
    case Token.KW_WHILE:
        parseWhileStmt(); break;
    default:
        error(); break;
    }
}
```
Example (cont)

// parse while (exp) stmt
void parseWhileStmt() {
 matchToken(Token.KW_WHILE);
 matchToken(Token.LPAREN);
 parseExpr();
 matchToken(Token.RPAREN);
 parseStmt();
}

// parse return exp ;
void parseReturnStmt() {
 matchToken(Token.KW_RETURN);
 parseExpr();
 matchToken(Token.SEMICOLON);
}

Note: your code needs to handle the case when matchToken fails.
Invariant for Functions

- The parser functions need to agree on where they are in the input.
- Useful invariant: When a parser function is called, the current token (next unprocessed piece of the input) is the token that begins the expanded non-terminal.
 - Corollary: when a parser function is done, it must have completely consumed input correspond to that non-terminal.
Possible Problems

• Two common problems for recursive-descent (and LL(1)) parsers
 » Left recursion (e.g., $E ::= E + T \mid \ldots$)
 » Common prefixes on the right hand side of productions
Left Recursion Problem

• Grammar rule

\[expr ::= expr \ + \ term \]
\[\quad \mid term \]

• Code

// parse expr ::= ...

```java
void parseExpr() {
    parseExpr();
    if (current token is ADD) {
        matchToken(ADD);
        parseTerm();
    }
}
```

• And the bug is?????
Left Recursion Problem

• If we code up a left-recursive rule as-is, we get an infinite recursion

• Non-solution: replace with a right-recursive rule

 \[expr ::= \text{term} + expr \mid \text{term} \]

 » Why isn’t this the right thing to do?
Left Recursion Solution

• Rewrite using right recursion and a new non-terminal
• Original: \(\textit{expr} ::= \textit{expr} + \textit{term} \mid \textit{term} \)
• New
 \[
 \textit{expr} ::= \textit{term} \textit{exprTail} \\
 \textit{exprTail} ::= + \textit{term} \textit{exprTail} \mid \varepsilon
 \]
• Properties
 » No infinite recursion if coded up directly
 » Maintains left associativity (required)
Another Way to Look at This

• Observe that

\[expr ::= expr + term | term \]

generates the sequence

\[term + term + term + \ldots + term \]

• We can sugar the original rule to show this

\[expr ::= term (+ term)^* \]

\[\text{or } expr ::= term \{ + term \} \]

• This can simplify the parser code
Code for Expressions

// parse
// expr ::= term { + term }
void parseExpr() {
 parseTerm();
 while (next symbol is ADD) {
 matchToken(ADD);
 parseTerm();
 }
}

// parse
// term ::= factor { * factor }
void term() {
 parseFactor();
 while (next symbol is MUL) {
 matchToken(MUL);
 parseFactor();
 }
}
What About Indirect Left Recursion?

• A grammar might have a derivation that leads to a left recursion
 \[A \Rightarrow \beta_1 \Rightarrow^* \beta_n \Rightarrow A\gamma \]

• There are systematic ways to factor such grammars
 » But we won't need them in our grammar
 » refer to a compiler text for more info
Left Factoring

- If two rules for a non-terminal have right hand sides that begin with the same symbol, we can’t predict which one to use
- Solution: Factor the common prefix into a separate production
Left Factoring Example

• Original grammar

\[ifStmt ::= if (expr) stmt \]
\[\quad | \quad if (expr) stmt \ else \ stmt \]

• Factored grammar

\[ifStmt ::= if (expr) stmt \ ifTail \]
\[ifTail ::= else stmt \ | \ \varepsilon \]
But it’s easiest to just code up the “else matches closest if” rule directly

```java
// parse
// if (expr) stmt [ else stmt ]

void parseIfStmt() {
    matchToken(IF);
    matchToken(LPAREN);
    parseExpr();
    matchToken(RPAREN); parseStmt();
    if (next symbol is ELSE) {
        matchToken(ELSE);
        parseStmt();
    }
}
```
Another Lookahead Problem

• In languages like FORTRAN, parentheses are used for array subscripts
• A FORTRAN grammar includes something like
 \[
 \text{factor ::= id (subscripts) | id (arguments) | …}
 \]
• When the parser sees "id (’", how can it decide between an array element reference and a function call?
Handling \textit{id} (?)

- Use the type of \textit{id} to decide
 - Requires declare-before-use restriction if we want to parse in 1 pass
- Use a covering grammar
 \begin{equation}
 \text{factor ::= id (commaSeparatedList) } | \ldots
 \end{equation}
 and fix later when more information is available
- Semantic analysis after parsing can resolve details that are difficult to express directly in the grammar
Top-Down Parsing Concluded

• Works with a smaller set of grammars than bottom-up, but can be done for most sensible programming language constructs
• If you need to write a quick-n-dirty parser, recursive descent is often the method of choice