Grammar

CSE 413, Autumn 2002
Programming Languages

http://www.cs.washington.edu/education/courses/413/02au/
Recall: Programming Language Specs

- Syntax of every significant programming language is specified by a formal grammar
 » BNF or some variation there on
- As language engineering has developed, formal methods have improved for defining useful grammars and tools for processing them
Productions

• The rules of a grammar are called *productions*

• Rules contain
 » Nonterminal symbols: grammar variables (*program*, *statement*, *id*, etc.)
 » Terminal symbols: concrete syntax that appears in programs: a, b, c, 0, 1, if, (, …

• Meaning of

 \[\text{nonterminal} ::= \text{<sequence of terminals and nonterminals>} \]

 In a derivation, an instance of *nonterminal* can be replaced by the sequence of terminals and nonterminals on the right of the production

• Often, there are two or more productions for a single nonterminal – can use either at different times
Grammar for D, a little language

\[
\begin{align*}
\text{program} & : = \text{function-def} \mid \text{program function-def} \\
\text{function-def} & : = \text{int id ()} \{ \text{statements} \} \\
& \quad \mid \text{int id (parameters)} \{ \text{statements} \} \\
& \quad \mid \text{int id ()} \{ \text{declarations statements} \} \\
& \quad \mid \text{int id (parameters)} \{ \text{declarations statements} \} \\
\text{parameters} & : = \text{parameter} \mid \text{parameters , parameter} \\
\text{parameter} & : = \text{int id} \\
\text{declarations} & : = \text{declaration} \mid \text{declarations declaration} \\
\text{declaration} & : = \text{int id ;} \\
\text{statements} & : = \text{statement} \mid \text{statements statement} \\
\text{statement} & : = \text{id = exp ;} \mid \text{return exp ;} \mid \{ \text{statements} \} \mid \text{if (bool-exp) statement} \mid \text{if (bool-exp) statement else statement} \\
& \quad \mid \text{while (bool-exp) statement} \\
\text{bool-exp} & : = \text{rel-exp} \mid \text{! (rel-exp)} \\
\text{rel-exp} & : = \text{exp == exp} \mid \text{exp > exp} \\
\text{exp} & : = \text{term} \mid \text{exp + term} \mid \text{exp - term} \\
\text{term} & : = \text{factor} \mid \text{term * factor} \\
\text{factor} & : = \text{id} \mid \text{int} \mid \text{(exp)} \mid \text{id ()} \mid \text{id (exps)} \\
\text{exps} & : = \text{exp} \mid \text{exps , exp}
\end{align*}
\]
Grammar for Java, a big language

 » Entire document
 500+ pages
 Grammar productions with explanatory text
 » Chapter 18, Syntax
 8 pages of grammar productions, presented in "BNF-style"
Parsing

- Parsing: reconstruct the derivation (syntactic structure) of a program
- In principle, a single recognizer could work directly from the concrete, character-by-character grammar
 - In practice this is never done
Parsing & Scanning

- In real compilers the recognizer is split into two phases
 - Scanner: translate input characters to tokens
 Also, report lexical errors like illegal characters and illegal symbols
 - Parser: read token stream and reconstruct the derivation
Parsing

- The syntax of most programming languages can be specified by a context-free grammar (CFG)
- Parsing
 - Given a grammar G and a sentence w in $L(G)$, traverse the derivation (parse tree) for w in some standard order and do something useful at each node
 - The tree might not be produced explicitly, but the control flow of a parser corresponds to a traversal
Parse Tree Example

```
program ::= statement | program statement
statement ::= assignStmt | ifStmt
assignStmt ::= id = expr ;
ifStmt ::= if ( expr ) stmt
expr ::= id | int | expr + expr
Id ::= a | b | c | i | j | k | n | x | y | z
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
```

```
W → a = 1 ; if ( a + 1 ) b = 2 ;
```

```
program
  └── program
     └── statement
         ├── assignStmt
         │    └── id = expr ;
         │         └── expr
         │            └── int
         └── ifStmt
             └── expr
                 └── expr
                     └── expr
                         └── int
```

```
w → a = 1 ; if ( a + 1 ) b = 2 ;
```
“Standard Order”

- For practical reasons we want the parser to be deterministic (no backtracking), and we want to examine the source program from left to right.
 - parse the program in linear time in the order it appears in the source file
Common Orderings

• Top-down
 » Start with the root
 » Traverse the parse tree depth-first, left-to-right (leftmost derivation)
 » LL(k)

• Bottom-up
 » Start at leaves and build up to the root
 Effectively a rightmost derivation in reverse
 » LR(k) and subsets (LALR(k), SLR(k), etc.)
At each point (node) in the traversal, perform some *semantic action*

- Construct nodes of full parse tree (rare)
- Construct abstract syntax tree (common)
- Construct linear, lower-level representation (more common in later parts of a modern compiler)
- Generate target code on the fly (1-pass compiler; not common in production compilers – can’t generate very good code in one pass)
Context-Free Grammars

• Formally, a grammar G is a tuple $<N, \Sigma, P, S>$ where

 » N a finite set of non-terminal symbols
 » Σ a finite set of terminal symbols
 » P a finite set of productions
 A subset of $N \times (N \cup \Sigma)^*$
 » S the start symbol, a distinguished element of N
 If not specified otherwise, this is usually assumed to be the non-terminal on the left of the first production
Standard Notations

a, b, c elements of Σ

w, x, y, z elements of Σ^*

A, B, C elements of N

X, Y, Z elements of $N \cup \Sigma$

α, β, γ elements of $(N \cup \Sigma)^*$

A$\rightarrow\alpha$ or A ::= α if <A, α> in P

"non-terminal A can take the form α"
Derivation Relations

- $\alpha A \gamma \Rightarrow \alpha \beta \gamma$ iff $A ::= \beta$ in P
 - "$\Rightarrow"$ is read "derives"
- $A \Rightarrow^* w$ if there is a chain of productions starting with A that generates w
 - transitive closure
Derivation Relations

• $w A \gamma \Rightarrow_{lm} w \beta \gamma$ iff $A ::= \beta$ in P
 » derives leftmost

• $\alpha A w \Rightarrow_{rm} \alpha \beta w$ iff $A ::= \beta$ in P
 » derives rightmost

• We will only be interested in leftmost and rightmost derivations – not random orderings
Languages

• For A in N, $L(A) = \{ \ w \mid A \Rightarrow^* w \}$

• If S is the start symbol of grammar G, define $L(G) = L(S)$
 » The language derived by G is the language derived by the start symbol S
Reduced Grammars

• Grammar G is *reduced* iff for every production $A ::= \alpha$ in G there is a derivation

$$S \Rightarrow^* x \; A \; z \Rightarrow x \; \alpha \; z \Rightarrow^* \; xyz$$

» i.e., no production is useless

• Convention: we will use only reduced grammars
Ambiguity

- Grammar G is *unambiguous* iff every w in $L(G)$ has a unique leftmost (or rightmost) derivation
 - Fact: unique leftmost or unique rightmost implies the other
- A grammar without this property is *ambiguous*
 - Note that other grammars that generate the same language may be unambiguous
- We need unambiguous grammars for parsing
Ambiguous Grammar for Expressions

\[
expr ::= expr + expr | expr - expr \\
| expr * expr | expr / expr | int
\]

\[
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
\]

• Show that this is ambiguous
 » How? Show two different leftmost or rightmost derivations for the same string
 » Equivalently: show two different parse trees for the same string
Example Derivation

Give a leftmost derivation of $2+3*4$ and show the parse tree

$$\text{expr ::= expr + expr | expr - expr | expr * expr | expr / expr | int}$$

$$\text{int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9}$$
Another Derivation

Give a different leftmost derivation of $2+3\times4$ and show the parse tree

```
expr ::= expr + expr | expr - expr
      | expr * expr | expr / expr | int
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
```
Another Example

Give two different derivations of 5+6+7
What’s going on here?

- The grammar has no notion of precedence or associativity
- Solution
 » Create a non-terminal for each level of precedence
 » Isolate the corresponding part of the grammar
 » Force the parser to recognize higher precedence subexpressions first
Classic Expression Grammar

expr ::= expr + term | expr – term | term
term ::= term * factor | term / factor | factor
factor ::= int | (expr)
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
Derive \(2 + 3 \times 4 \)

\[
\begin{align*}
\text{expr} &::= \text{expr} + \text{term} \mid \text{expr} - \text{term} \mid \text{term} \\
\text{term} &::= \text{term} \ast \text{factor} \mid \text{term} / \text{factor} \mid \text{factor} \\
\text{factor} &::= \text{int} \mid (\text{expr}) \\
\text{int} &::= 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7
\end{align*}
\]
Derive $5 + 6 + 7$

$$expr ::= expr + term \mid expr - term \mid term$$
$$term ::= term * factor \mid term / factor \mid factor$$
$$factor ::= int \mid (expr)$$
$$int ::= 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7$$
Derive $5 + (6 + 7)$
Another Classic Example

• Grammar for conditional statements

\[
\text{ifStmt ::= if (cond) stmt} \\
| \text{if (cond) stmt else stmt}
\]

» Exercise: show that this is ambiguous
How?
One Derivation

\[
ifStmt ::= \text{if (cond) stmt} \\
\quad | \text{if (cond) stmt else stmt}
\]

\[
\text{if (cond) if (cond) stmt else stmt}
\]
Another Derivation

ifStmt ::= if (cond) stmt
 | if (cond) stmt else stmt

if (cond) if (cond) stmt else stmt
Solving if Ambiguity

• Fix the grammar to separate if statements with else clause and if statements with no else
 » Done in Java reference grammar
 » Adds lots of non-terminals

• Use some ad-hoc rule in parser
 » “else matches closest unpaired if”