
22-November-2002 cse413-19-Grammar © 2002 University of Washington 1

Grammar

CSE 413, Autumn 2002
Programming Languages

http://www.cs.washington.edu/education/courses/413/02au/

22-November-2002 cse413-19-Grammar © 2002 University of Washington 2

Recall: Programming Language Specs

• Syntax of every significant programming
language is specified by a formal grammar
» BNF or some variation there on

• As language engineering has developed,
formal methods have improved for defining
useful grammars and tools for processing them

22-November-2002 cse413-19-Grammar © 2002 University of Washington 3

Productions
• The rules of a grammar are called productions
• Rules contain

» Nonterminal symbols: grammar variables (program,
statement, id, etc.)

» Terminal symbols: concrete syntax that appears in
programs: a, b, c, 0, 1, if, (, …

• Meaning of
 nonterminal ::= <sequence of terminals and nonterminals>

In a derivation, an instance of nonterminal can be replaced
by the sequence of terminals and nonterminals on the right
of the production

• Often, there are two or more productions for a single
nonterminal – can use either at different times

Grammar for D, a little language
program ::= function-def | program function-def
function-def ::= int id () { statements }
 | int id (parameters) { statements }
 | int id () { declarations statements }
 | int id (parameters) { declarations statements }
parameters ::= parameter | parameters , parameter
parameter ::= int id
declarations ::= declaration | declarations declaration
declaration ::= int id ;
statements ::= statement | statements statement
statement ::= id = exp ; | return exp ; | { statements }
 | if (bool-exp) statement | if (bool-exp) statement else statement
 | while (bool-exp) statement
bool-exp ::= rel-exp | ! (rel-exp)
rel-exp ::= exp == exp | exp > exp
exp ::= term | exp + term | exp - term
term ::= factor | term * factor
factor ::= id | int | (exp) | id () | id (exps)
exps ::= exp | exps , exp

22-November-2002 cse413-19-Grammar © 2002 University of Washington 5

Grammar for Java, a big language

• The Java™ Language Specification, Second
Edition
» Entire document

500+ pages
Grammar productions with explanatory text

» Chapter 18, Syntax
8 pages of grammar productions, presented in "BNF-style"

22-November-2002 cse413-19-Grammar © 2002 University of Washington 6

Parsing

• Parsing: reconstruct the derivation (syntactic
structure) of a program

• In principle, a single recognizer could work
directly from the concrete, character-by-
character grammar
» In practice this is never done

22-November-2002 cse413-19-Grammar © 2002 University of Washington 7

Parsing & Scanning

• In real compilers the recognizer is split into two
phases
» Scanner: translate input characters to tokens

Also, report lexical errors like illegal characters and illegal symbols

» Parser: read token stream and reconstruct the derivation

Scanner Parsersource tokens

22-November-2002 cse413-19-Grammar © 2002 University of Washington 8

Parsing
• The syntax of most programming languages

can be specified by a context-free grammar
(CFG)

• Parsing
» Given a grammar G and a sentence w in L(G),

traverse the derivation (parse tree) for w in some
standard order and do something useful at each
node

» The tree might not be produced explicitly, but the
control flow of a parser corresponds to a traversal

Parse Tree
Example

a = 1 ; if (a + 1) b = 2 ;

program ::= statement | program statement
statement ::= assignStmt | ifStmt
assignStmt ::= id = expr ;
ifStmt ::= if (expr) stmt
expr ::= id | int | expr + expr
Id ::= a | b | c | i | j | k | n | x | y | z
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9program

program

statement

statement

ifStmt

assignStmt
statement

expr assignStmt
expr expr

intid

id expr

int

id expr

int

G

w
22-November-2002 cse413-19-Grammar © 2002 University of Washington 10

“Standard Order”

• For practical reasons we want the parser to be
deterministic (no backtracking), and we want
to examine the source program from left to
right.
» parse the program in linear time in the order it

appears in the source file

22-November-2002 cse413-19-Grammar © 2002 University of Washington 11

Common Orderings

• Top-down
» Start with the root
» Traverse the parse tree depth-first, left-to-right (leftmost

derivation)
» LL(k)

• Bottom-up
» Start at leaves and build up to the root

Effectively a rightmost derivation in reverse

» LR(k) and subsets (LALR(k), SLR(k), etc.)

22-November-2002 cse413-19-Grammar © 2002 University of Washington 12

“Something Useful”

• At each point (node) in the traversal, perform some
semantic action
» Construct nodes of full parse tree (rare)
» Construct abstract syntax tree (common)
» Construct linear, lower-level representation (more common

in later parts of a modern compiler)
» Generate target code on the fly (1-pass compiler; not

common in production compilers – can’t generate very
good code in one pass)

22-November-2002 cse413-19-Grammar © 2002 University of Washington 13

Context-Free Grammars

• Formally, a grammar G is a tuple <N,Σ,P,S>
where
» N a finite set of non-terminal symbols
» Σ a finite set of terminal symbols
» P a finite set of productions

A subset of N × (N ∪ Σ)*
» S the start symbol, a distinguished element of N

If not specified otherwise, this is usually assumed to be
the non-terminal on the left of the first production

22-November-2002 cse413-19-Grammar © 2002 University of Washington 14

Standard Notations

a, b, c elements of Σ terminals

w, x, y, z elements of Σ* strings of terminals

A, B, C elements of N non-terminals

X, Y, Z elements of N ∪ Σ grammar symbols

α, β, γ elements of (N ∪ Σ)* strings of symbols

A→α or A ::= α if <A, α > in P
"non-terminal A can take the form α"

22-November-2002 cse413-19-Grammar © 2002 University of Washington 15

Derivation Relations

• α A γ => α β γ iff A ::= β in P
» "=>" is read "derives"

• A =>* w if there is a chain of productions
starting with A that generates w
» transitive closure

22-November-2002 cse413-19-Grammar © 2002 University of Washington 16

Derivation Relations

• w A γ =>lm w β γ iff A ::= β in P
» derives leftmost

• α A w =>rm α β w iff A ::= β in P
» derives rightmost

• We will only be interested in leftmost and
rightmost derivations – not random orderings

22-November-2002 cse413-19-Grammar © 2002 University of Washington 17

Languages

• For A in N, L(A) = { w | A =>* w }
• If S is the start symbol of grammar G, define

L(G) = L(S)
» The language derived by G is the language derived

by the start symbol S

22-November-2002 cse413-19-Grammar © 2002 University of Washington 18

Reduced Grammars

• Grammar G is reduced iff for every
production A ::= α in G there is a derivation

 S =>* x A z => x α z =>* xyz
» i.e., no production is useless

• Convention: we will use only reduced
grammars

22-November-2002 cse413-19-Grammar © 2002 University of Washington 19

Ambiguity

• Grammar G is unambiguous iff every w in
L(G) has a unique leftmost (or rightmost)
derivation
» Fact: unique leftmost or unique rightmost implies

the other
• A grammar without this property is ambiguous

» Note that other grammars that generate the same
language may be unambiguous

• We need unambiguous grammars for parsing

22-November-2002 cse413-19-Grammar © 2002 University of Washington 20

Ambiguous Grammar for Expressions

expr ::= expr + expr | expr - expr
| expr * expr | expr / expr | int

int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
• Show that this is ambiguous

» How? Show two different leftmost or rightmost
derivations for the same string

» Equivalently: show two different parse trees for
the same string

Example Derivation
Give a leftmost derivation of 2+3*4 and show the parse tree

expr ::= expr + expr | expr - expr
| expr * expr | expr / expr | int

int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Give a different leftmost derivation of 2+3*4 and show the parse tree

Another Derivation
expr ::= expr + expr | expr - expr

| expr * expr | expr / expr | int
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Give two different derivations of 5+6+7

Another Example
expr ::= expr + expr | expr - expr

| expr * expr | expr / expr | int
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

22-November-2002 cse413-19-Grammar © 2002 University of Washington 24

What’s going on here?

• The grammar has no notion of precedence or
associativity

• Solution
» Create a non-terminal for each level of precedence
» Isolate the corresponding part of the grammar
» Force the parser to recognize higher precedence

subexpressions first

22-November-2002 cse413-19-Grammar © 2002 University of Washington 25

Classic Expression Grammar

expr ::= expr + term | expr – term | term
term ::= term * factor | term / factor | factor
factor ::= int | (expr)
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

expr ::= expr + term | expr – term | term
term ::= term * factor | term / factor | factor
factor ::= int | (expr)
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

Derive 2 + 3 * 4

expr ::= expr + term | expr – term | term
term ::= term * factor | term / factor | factor
factor ::= int | (expr)
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

Derive 5 + 6 + 7
expr ::= expr + term | expr – term | term
term ::= term * factor | term / factor | factor
factor ::= int | (expr)
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

Derive 5 + (6 + 7)

22-November-2002 cse413-19-Grammar © 2002 University of Washington 29

Another Classic Example

• Grammar for conditional statements
ifStmt ::= if (cond) stmt

| if (cond) stmt else stmt

» Exercise: show that this is ambiguous
How?

if (cond) if (cond) stmt else stmt

ifStmt ::= if (cond) stmt
| if (cond) stmt else stmtOne Derivation

if (cond) if (cond) stmt else stmt

ifStmt ::= if (cond) stmt
| if (cond) stmt else stmtAnother Derivation

22-November-2002 cse413-19-Grammar © 2002 University of Washington 32

Solving if Ambiguity

• Fix the grammar to separate if statements with
else clause and if statements with no else
» Done in Java reference grammar
» Adds lots of non-terminals

• Use some ad-hoc rule in parser
» “else matches closest unpaired if”

