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Classes, Interfaces, Inheritance

CSE 413, Autumn 2002
Programming Languages

http://www.cs.washington.edu/education/courses/413/02au/
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Readings and References
• Reading in Core Java Volume 1

Chapter 4, Objects and Classes, sections Intro, Using Existing Classes,
Building Your Own Classes, Method Parameters, and Object
Construction

Chapter 5, Inheritance, sections Extending Classes and Object : The
cosmic superclass

Chapter 6, Interfaces and Inner Classes, section Interfaces

• Reading in Java tutorial
» Object Basics and Simple Data Objects
» Classes and Inheritance
» Interfaces and Packages
» http://java.sun.com/docs/books/tutorial/java/TOC.html#concepts
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Recall: Objects and Classes

• A class is a definition of a type of thing
» The class definition is where we find a description of how

things of this type behave.

• An object is a particular thing
» There can be many objects of a given class.  An object is

an instance of a class.
» All objects of a given class exhibit the same behavior.
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Class Concepts
• Class definitions have two important

components:
» state
» behavior or interface

• State is expressed using fields in the class
definition

• Behavior is expressed using methods
• Together, fields and methods are called class

members
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Java Class Syntax

• Basic form:
[modifiers] class name { [body] }

• Classes often written like:
class myClass {

// public features

// private features

}

• Be consistent, not religious about structure



Example : java.util.Random
package java.util;
public class Random implements java.io.Serializable {

static final long serialVersionUID = 3905348978240129619L;
private long seed;
private final static long multiplier = 0x5DEECE66DL;
private final static long addend = 0xBL;
private final static long mask = (1L << 48) - 1;
public Random() {...}
public Random(long seed) {...}
synchronized public void setSeed(long seed) {...}
synchronized protected int next(int bits) {...}
private static final int BITS_PER_BYTE = 8;
private static final int BYTES_PER_INT = 4;
public void nextBytes(byte[] bytes) {...}
public int nextInt() {...}
public int nextInt(int n) {...}
public long nextLong() {...}
public boolean nextBoolean() {...}
public float nextFloat() {...}
public double nextDouble() {...}
private double nextNextGaussian;
private boolean haveNextNextGaussian = false;
synchronized public double nextGaussian() {...}

}
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Instantiate - create an object

• Once we create a class definition using an editor and the
compiler, we can instantiate it with the “new” operator
» to instantiate means to create objects based on the class

definition
» Oval moon = new Oval(100,100,20,20,Color.gray,true);

• We can then manipulate these objects to do the work that
needs to be done
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Constructors
• A constructor is used to create a new object of a particular class
• Constructors are special methods that get called with the new

operator
Dog rover = new Dog(10);

• The name of a constructor is the same as the name of the class
» in this case Dog(double rate) is a constructor for the class Dog

• You can think of the constructor as a method that initializes
everything according to what the caller has specified, using
whatever default values might be appropriate

• If you don’t supply any constructor, the compiler inserts a simple
constructor for you.  This constructor takes no arguments, and
simply calls the superclass constructor.
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Multiple Constructors
• There are often several constructors for any one class
• They all have the same name (the name of the class)
• They must differ in their parameter lists

» the compiler can tell which constructor you mean by looking
at the list of arguments you supply when you call the
constructor
Rectangle deadTree;

Rectangle liveTrunk;

deadTree=new Rectangle(150,150,10,50);

liveTrunk=new
Rectangle(200,210,10,50,Color.orange,true);

• There is no return value specified for any constructor, because a
constructor always fills in the values in a new object
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superclass constructor

• The first statement of a constructor is important.  It
always calls another constructor
» Most often, it calls the superclass’ no-args constructor
» if you don't put in the call, the compiler will do it for you

• You can override this
» by calling a superclass constructor yourself using super(...)
» by calling another constructor of your class using this(...)
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Methods

• A method is a block of statements that can be invoked
to perform a particular action
» implementing and then calling methods are the way we

specify what an object does

• The collection of all the methods defined for a class
defines what objects of that class can do
» For example, if we define methods bark, sleep, eat,

and getRate in the Dog class, then all Dog objects created
from that class can do all those things.

Dog.java
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Method parameters
• Some methods know how to implement a little bit of

behavior without needing any more information
public void bark() {

System.out.println("Woof! Woof!");
}

» A Dog implemented this way will bark exactly the same way every time
this method is called

• But many methods need to know something additional
in order to actually perform their task

/**
* Eat some goodies. There is some weight gain after eating.
* @param pounds the number of pounds of food provided.
*/
public void eat(int pounds) {

double coverage = (double)pounds/(double)consumptionRate;
…

» We use parameters (arguments) to provide this additional information
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Specifying the required parameters
• The method header declares the type and name for each

required parameter

• method eat has one parameter of type int named
pounds

/**
* Eat some goodies. There is some weight gain after eating.
* @param pounds the number of pounds of food provided.
*/
public void eat(int pounds) {

double coverage = (double)pounds/(double)consumptionRate;
…

» note that there is a javadoc comment describing the purpose of the
parameter
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Parameter declaration

• Declaring the parameter in the parameter list is just
like declaring it in the body of the code
» The variable pounds has a type (int) and it can be used

in expressions exactly the way any other variable in the
method is used

• You can declare several parameters in the formal
parameter list of a method
» but try to keep the number down
» if there are too many, the users of this method (you and

other programmers) will have a hard time keeping straight
just which parameter is which
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Examples from class java.lang.String
• toLowerCase()

Converts all of the characters in this String to lower case using the
rules of the default locale

• startsWith(String prefix)

Tests if this string starts with the specified prefix

• substring(int beginIndex, int endIndex)

Returns a new string that is a substring of this string

• regionMatches(int toffset, String other,
int ooffset, int len)

Tests if two string regions are equal
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public String substring(int beginIndex, int endIndex) {

if (beginIndex < 0) {

throw new StringIndexOutOfBoundsException(beginIndex);

}

if (endIndex > count) {

throw new StringIndexOutOfBoundsException(endIndex);

}

if (beginIndex > endIndex) {

throw new StringIndexOutOfBoundsException(endIndex-beginIndex);

}

return ((beginIndex == 0) && (endIndex == count)) ? this :

new String(offset+beginIndex, endIndex-beginIndex, value);

}

Parameter variables in body of method
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Supplying an actual value
• The actual values don’t have to be literals like 2 or 14
• You can supply a variable name in the call, and the

current value of the variable will be provided to the
method

int currentFoodAmount = 4;

Dog jack = new Dog(2);

jack.eat(currentFoodAmount);

currentFoodAmount = 20;

jack.eat(currentFoodAmount);

• In this example, the method eat executes twice, once with
pounds equal to 4, and then again with pounds equal to 20

• Notice that the method always associates the value with the
name pounds, even though the caller might be using
something else
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Actual arguments can be expressions
• You can calculate the value to be passed right in the call

to the method if that is appropriate
» Recall: substring(int beginIndex, int endIndex)

int beginIndex = 0;

String myName = “Doug Johnson”;

String twoChar = myName.substring(beginIndex, beginIndex+2);

» twoChar is now a reference to a String containing “Do”

• If necessary and possible, the compiler will convert the
value provided by the caller to the type of the value that
was requested by the method in the formal parameter list
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Returning a value to the caller
• A method can also return a value to its caller
• For example, there are often “accessor” methods that

allow you to ask an object what some part of its
current state is

public int getX()

public int getWidth()

• The word int in the above examples specifies the
type of value that the method returns

/**

* Get current X value.

* @return the X coordinate

*/

public int getX() {

return x;

}
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Method Overloading

• Classes may declare multiple methods with the same
name, provided the signature is different

• The signature of a method is:
» method name
» parameter list
» throws clause

• For example, System.out.println is overloaded
for many types

println( char c);

println( double d);

println(String s);
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Documentation for methods

• Short, useful description of the purpose of the method.
» javadoc takes the first sentence of this description and uses it in the

summary part of the documentation page
» If there is important background information on how to use the method,

it should follow the initial sentence.

• All parameters
» use an @param entry for each parameter

• The return value, if any
» use an @return tag if appropriate

• Error exceptions
» use a @throws tag if appropriate
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Abstract the behavior of classes
• We sometimes want to use one or more

methods that are available for various objects,
even though they are not all of the same class

• Consider the Cat, Dog, and Sparrow
» They all have eat(), sleep(), getMealSize(), and a

voice of some sort
• So we can promise that:

» We don’t know exactly what kind of an animal it
is, but we do know that it can eat, sleep, make a
noise, and tell you its meal size PetList.java
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Interface

• Java has a nice mechanism for this
» an interface

• You can say that any class that claims to be an
Animal will guarantee that it has methods for
all the things that any Animal must do

• The definition of the interface shows exactly
what the methods must look like
» the actual implementation is not in the interface
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public interface Animal
/**
* This interface specifies the behavior that a class
* must implement in order to be considered a real Animal.
*
*/
public interface Animal {

/**
* Provide this animal with a way to rest when weary.
*/
public void sleep();
/**
* Eat some goodies. There is some weight gain after eating.
* @param pounds the number of pounds of food provided.
*/
public void eat(double pounds);
/**
* get the meal size defined for this animal.
* @return meal size in pounds
*/
public double getMealSize();
/**
* Provide this animal with a voice.
*/
public void noise();

}
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using an interface in a class definition

• Each of the classes that wants to be considered
an Animal must say so at the very beginning of
the class definition

• You are telling the compiler that this class
guarantees that it will implement all the
methods that are required in the interface

public class Dog implements Animal {...
public class Cat implements Animal {...
public class Sparrow implements Animal {...
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conform to expectations ...
• Each of the animal classes uses the same method

name when they make their noise
public class Dog implements Animal {
...
/**
* Provide this animal with a voice.
*/
public void noise() {

System.out.println(name+" : Woof! Woof!");
}

public class Cat implements Animal {
...
/**
* Provide this animal with a voice.
*/
public void noise() {

System.out.println(name+" : Meow! Meow!");
}
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using the Animal interface in PetList

• Now we know that all of the animals will
satisfy the Animal interface, no matter what
kind of object they are

• So PetList can guarantee to the compiler that
the objects that it is dealing with are Animals,
no matter what else they might be
» consequently, there is a known set of methods

available for each of the objects, no matter what
class was used to build it
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Cast to Animal

• Tell the compiler that the ArrayList contains
objects that are Animals

public void dine() {
for (int i=0; i<theBunch.size(); i++) {

Animal pet = (Animal)theBunch.get(i);
pet.eat(2*pet.getMealSize());

}
}
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Relationships between classes

• Classes can be related via composition
» This is often referred to as the “has-a” relationship
» eg, a PetList has a list in an ArrayList of Animals

• Classes can also be related via inheritance
» This is often referred to as the “is-a” relationship
» eg, an ArrayList is an AbstractList
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PetList has a list of Animals

PetList
ArrayList theBunch

ArrayList
int size

item 0

item 1

item 2

etc

Dog

Sparrow

Cat



ArrayList is a AbstractList

is a

is a

is a
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Why use inheritance?
• Code simplification

» Avoid doing the same operation in two places
» Avoid storing “matching state” in two places

• Code simplification
» We can deal with objects based on their common

behavior, and don’t need to have special cases for
each subtype

• Code simplification
» Lots of elegant code has already been written - use

it, don’t try to rewrite everything from scratch
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Reduce the need for duplicated code

• In our collection of pets:
» Dog has getMealSize() and eat(double w) methods
» Cat has getMealSize() and eat(double w) methods
» and they were implemented exactly the same way

• We can define a class named BasicAnimal that
implements these methods once, and then the
subclasses can extend it and add their own
implementations of other methods if they like
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BasicAnimal class
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Syntax of inheritance

• Specify inheritance relationship using extends

public abstract class BasicAnimal implements Animal {
…
public double getMealSize() {

return mealSize;
}

}

public class Dog extends BasicAnimal { …

• Dog can use existing BasicAnimal methods if desired
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Dog as a subclass of BasicAnimal
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Using the superclass constructor
• Constructor of the superclass is called to do much

(or all) of the initialization for the subclass

public class BasicAnimal implements Animal {
public BasicAnimal(String theName,double serving,double weight) {

name = theName;
mealSize = serving;
currentWeight = weight;
System.out.println("Created "+name);

}

public class Dog extends BasicAnimal {
public Dog(String theName) {

super(theName,0.5,20);
}
public Dog(String theName,double serving,double weight) {

super(theName,serving,weight);
}



27-October-2002 cse413-13-Inheritance © 2002 University of Washington 38

this() and super() as constructors
• You can use an alias to call another constructor

» super(...) to call a superclass constructor
» this(…) to call another constructor from same class

• The call to the other constructor must be the first
line of the constructor
» If neither this() nor super() is the first line in a

constructor, a call to super() is inserted automatically by
the compiler.  This call takes no arguments.  If the
superclass has no constructor that takes no arguments,
the class will not compile.
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Overriding methods
• Overriding methods is how a subclass refines or

extends the behavior of a superclass method
• Manager and Executive classes extend Employee
• How do we specify different behavior for

Managers and Executives?
» Employee:

double pay() {return hours*rate + overtime*(rate+5.00);}
» Manager:

double pay() {return hours*rate;}
» Executive:

double pay() {return salary + bonus;}
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Overriding methods

public class Employee {

// other stuff

public float pay() {

return hours*rate + overtime*(rate+5.00);

}

}

public class Manager extends Employee {

// other stuff

public float pay() {

return hours*rate;

}

}
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instanceof

• Used to test an object for class membership

• One way to ensure that a cast will succeed
• Tests for a relationship anywhere along the

hierarchy
» Also tests whether a class implements an interface

• What class must <classname> represent for the
following expression to be true always?

if (v instanceof <classname>) { … }

if (bunch.get(i) instanceof Dog) {…}
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instanceof example with interface
ArrayList onStage = theStage.getActors();

for (int i=0; i<onStage.size(); i++) {

if (onStage.get(i) instanceof ClickableActor) {

ClickableActor clickee = (ClickableActor)onStage.get(i);

if (clickee.intersects(cursor)) {

clickee.doClickAction(theStage);

if (clickee == runButton) {

if (runButton.isEnabled()) {

theStage.animate();

} else {

theStage.quitAnimation();

}

}

}

}

}


