
27-October-2002 cse413-13-Inheritance © 2002 University of Washington 1

Classes, Interfaces, Inheritance

CSE 413, Autumn 2002
Programming Languages

http://www.cs.washington.edu/education/courses/413/02au/



27-October-2002 cse413-13-Inheritance © 2002 University of Washington 2

Readings and References
• Reading in Core Java Volume 1

Chapter 4, Objects and Classes, sections Intro, Using Existing Classes,
Building Your Own Classes, Method Parameters, and Object
Construction

Chapter 5, Inheritance, sections Extending Classes and Object : The
cosmic superclass

Chapter 6, Interfaces and Inner Classes, section Interfaces

• Reading in Java tutorial
» Object Basics and Simple Data Objects
» Classes and Inheritance
» Interfaces and Packages
» http://java.sun.com/docs/books/tutorial/java/TOC.html#concepts



27-October-2002 cse413-13-Inheritance © 2002 University of Washington 3

Recall: Objects and Classes

• A class is a definition of a type of thing
» The class definition is where we find a description of how

things of this type behave.

• An object is a particular thing
» There can be many objects of a given class.  An object is

an instance of a class.
» All objects of a given class exhibit the same behavior.



27-October-2002 cse413-13-Inheritance © 2002 University of Washington 4

Class Concepts
• Class definitions have two important

components:
» state
» behavior or interface

• State is expressed using fields in the class
definition

• Behavior is expressed using methods
• Together, fields and methods are called class

members



27-October-2002 cse413-13-Inheritance © 2002 University of Washington 5

Java Class Syntax

• Basic form:
[modifiers] class name { [body] }

• Classes often written like:
class myClass {

// public features

// private features

}

• Be consistent, not religious about structure



Example : java.util.Random
package java.util;
public class Random implements java.io.Serializable {

static final long serialVersionUID = 3905348978240129619L;
private long seed;
private final static long multiplier = 0x5DEECE66DL;
private final static long addend = 0xBL;
private final static long mask = (1L << 48) - 1;
public Random() {...}
public Random(long seed) {...}
synchronized public void setSeed(long seed) {...}
synchronized protected int next(int bits) {...}
private static final int BITS_PER_BYTE = 8;
private static final int BYTES_PER_INT = 4;
public void nextBytes(byte[] bytes) {...}
public int nextInt() {...}
public int nextInt(int n) {...}
public long nextLong() {...}
public boolean nextBoolean() {...}
public float nextFloat() {...}
public double nextDouble() {...}
private double nextNextGaussian;
private boolean haveNextNextGaussian = false;
synchronized public double nextGaussian() {...}

}



27-October-2002 cse413-13-Inheritance © 2002 University of Washington 7

Instantiate - create an object

• Once we create a class definition using an editor and the
compiler, we can instantiate it with the “new” operator
» to instantiate means to create objects based on the class

definition
» Oval moon = new Oval(100,100,20,20,Color.gray,true);

• We can then manipulate these objects to do the work that
needs to be done



27-October-2002 cse413-13-Inheritance © 2002 University of Washington 8

Constructors
• A constructor is used to create a new object of a particular class
• Constructors are special methods that get called with the new

operator
Dog rover = new Dog(10);

• The name of a constructor is the same as the name of the class
» in this case Dog(double rate) is a constructor for the class Dog

• You can think of the constructor as a method that initializes
everything according to what the caller has specified, using
whatever default values might be appropriate

• If you don’t supply any constructor, the compiler inserts a simple
constructor for you.  This constructor takes no arguments, and
simply calls the superclass constructor.



27-October-2002 cse413-13-Inheritance © 2002 University of Washington 9

Multiple Constructors
• There are often several constructors for any one class
• They all have the same name (the name of the class)
• They must differ in their parameter lists

» the compiler can tell which constructor you mean by looking
at the list of arguments you supply when you call the
constructor
Rectangle deadTree;

Rectangle liveTrunk;

deadTree=new Rectangle(150,150,10,50);

liveTrunk=new
Rectangle(200,210,10,50,Color.orange,true);

• There is no return value specified for any constructor, because a
constructor always fills in the values in a new object



27-October-2002 cse413-13-Inheritance © 2002 University of Washington 10

superclass constructor

• The first statement of a constructor is important.  It
always calls another constructor
» Most often, it calls the superclass’ no-args constructor
» if you don't put in the call, the compiler will do it for you

• You can override this
» by calling a superclass constructor yourself using super(...)
» by calling another constructor of your class using this(...)



27-October-2002 cse413-13-Inheritance © 2002 University of Washington 11

Methods

• A method is a block of statements that can be invoked
to perform a particular action
» implementing and then calling methods are the way we

specify what an object does

• The collection of all the methods defined for a class
defines what objects of that class can do
» For example, if we define methods bark, sleep, eat,

and getRate in the Dog class, then all Dog objects created
from that class can do all those things.

Dog.java



27-October-2002 cse413-13-Inheritance © 2002 University of Washington 12

Method parameters
• Some methods know how to implement a little bit of

behavior without needing any more information
public void bark() {

System.out.println("Woof! Woof!");
}

» A Dog implemented this way will bark exactly the same way every time
this method is called

• But many methods need to know something additional
in order to actually perform their task

/**
* Eat some goodies. There is some weight gain after eating.
* @param pounds the number of pounds of food provided.
*/
public void eat(int pounds) {

double coverage = (double)pounds/(double)consumptionRate;
…

» We use parameters (arguments) to provide this additional information



27-October-2002 cse413-13-Inheritance © 2002 University of Washington 13

Specifying the required parameters
• The method header declares the type and name for each

required parameter

• method eat has one parameter of type int named
pounds

/**
* Eat some goodies. There is some weight gain after eating.
* @param pounds the number of pounds of food provided.
*/
public void eat(int pounds) {

double coverage = (double)pounds/(double)consumptionRate;
…

» note that there is a javadoc comment describing the purpose of the
parameter



27-October-2002 cse413-13-Inheritance © 2002 University of Washington 14

Parameter declaration

• Declaring the parameter in the parameter list is just
like declaring it in the body of the code
» The variable pounds has a type (int) and it can be used

in expressions exactly the way any other variable in the
method is used

• You can declare several parameters in the formal
parameter list of a method
» but try to keep the number down
» if there are too many, the users of this method (you and

other programmers) will have a hard time keeping straight
just which parameter is which



27-October-2002 cse413-13-Inheritance © 2002 University of Washington 15

Examples from class java.lang.String
• toLowerCase()

Converts all of the characters in this String to lower case using the
rules of the default locale

• startsWith(String prefix)

Tests if this string starts with the specified prefix

• substring(int beginIndex, int endIndex)

Returns a new string that is a substring of this string

• regionMatches(int toffset, String other,
int ooffset, int len)

Tests if two string regions are equal



27-October-2002 cse413-13-Inheritance © 2002 University of Washington 16

public String substring(int beginIndex, int endIndex) {

if (beginIndex < 0) {

throw new StringIndexOutOfBoundsException(beginIndex);

}

if (endIndex > count) {

throw new StringIndexOutOfBoundsException(endIndex);

}

if (beginIndex > endIndex) {

throw new StringIndexOutOfBoundsException(endIndex-beginIndex);

}

return ((beginIndex == 0) && (endIndex == count)) ? this :

new String(offset+beginIndex, endIndex-beginIndex, value);

}

Parameter variables in body of method



27-October-2002 cse413-13-Inheritance © 2002 University of Washington 17

Supplying an actual value
• The actual values don’t have to be literals like 2 or 14
• You can supply a variable name in the call, and the

current value of the variable will be provided to the
method

int currentFoodAmount = 4;

Dog jack = new Dog(2);

jack.eat(currentFoodAmount);

currentFoodAmount = 20;

jack.eat(currentFoodAmount);

• In this example, the method eat executes twice, once with
pounds equal to 4, and then again with pounds equal to 20

• Notice that the method always associates the value with the
name pounds, even though the caller might be using
something else



27-October-2002 cse413-13-Inheritance © 2002 University of Washington 18

Actual arguments can be expressions
• You can calculate the value to be passed right in the call

to the method if that is appropriate
» Recall: substring(int beginIndex, int endIndex)

int beginIndex = 0;

String myName = “Doug Johnson”;

String twoChar = myName.substring(beginIndex, beginIndex+2);

» twoChar is now a reference to a String containing “Do”

• If necessary and possible, the compiler will convert the
value provided by the caller to the type of the value that
was requested by the method in the formal parameter list



27-October-2002 cse413-13-Inheritance © 2002 University of Washington 19

Returning a value to the caller
• A method can also return a value to its caller
• For example, there are often “accessor” methods that

allow you to ask an object what some part of its
current state is

public int getX()

public int getWidth()

• The word int in the above examples specifies the
type of value that the method returns

/**

* Get current X value.

* @return the X coordinate

*/

public int getX() {

return x;

}



27-October-2002 cse413-13-Inheritance © 2002 University of Washington 20

Method Overloading

• Classes may declare multiple methods with the same
name, provided the signature is different

• The signature of a method is:
» method name
» parameter list
» throws clause

• For example, System.out.println is overloaded
for many types

println( char c);

println( double d);

println(String s);



27-October-2002 cse413-13-Inheritance © 2002 University of Washington 21

Documentation for methods

• Short, useful description of the purpose of the method.
» javadoc takes the first sentence of this description and uses it in the

summary part of the documentation page
» If there is important background information on how to use the method,

it should follow the initial sentence.

• All parameters
» use an @param entry for each parameter

• The return value, if any
» use an @return tag if appropriate

• Error exceptions
» use a @throws tag if appropriate



27-October-2002 cse413-13-Inheritance © 2002 University of Washington 22

Abstract the behavior of classes
• We sometimes want to use one or more

methods that are available for various objects,
even though they are not all of the same class

• Consider the Cat, Dog, and Sparrow
» They all have eat(), sleep(), getMealSize(), and a

voice of some sort
• So we can promise that:

» We don’t know exactly what kind of an animal it
is, but we do know that it can eat, sleep, make a
noise, and tell you its meal size PetList.java



27-October-2002 cse413-13-Inheritance © 2002 University of Washington 23

Interface

• Java has a nice mechanism for this
» an interface

• You can say that any class that claims to be an
Animal will guarantee that it has methods for
all the things that any Animal must do

• The definition of the interface shows exactly
what the methods must look like
» the actual implementation is not in the interface



27-October-2002 cse413-13-Inheritance © 2002 University of Washington 24

public interface Animal
/**
* This interface specifies the behavior that a class
* must implement in order to be considered a real Animal.
*
*/
public interface Animal {

/**
* Provide this animal with a way to rest when weary.
*/
public void sleep();
/**
* Eat some goodies. There is some weight gain after eating.
* @param pounds the number of pounds of food provided.
*/
public void eat(double pounds);
/**
* get the meal size defined for this animal.
* @return meal size in pounds
*/
public double getMealSize();
/**
* Provide this animal with a voice.
*/
public void noise();

}



27-October-2002 cse413-13-Inheritance © 2002 University of Washington 25

using an interface in a class definition

• Each of the classes that wants to be considered
an Animal must say so at the very beginning of
the class definition

• You are telling the compiler that this class
guarantees that it will implement all the
methods that are required in the interface

public class Dog implements Animal {...
public class Cat implements Animal {...
public class Sparrow implements Animal {...



27-October-2002 cse413-13-Inheritance © 2002 University of Washington 26

conform to expectations ...
• Each of the animal classes uses the same method

name when they make their noise
public class Dog implements Animal {
...
/**
* Provide this animal with a voice.
*/
public void noise() {

System.out.println(name+" : Woof! Woof!");
}

public class Cat implements Animal {
...
/**
* Provide this animal with a voice.
*/
public void noise() {

System.out.println(name+" : Meow! Meow!");
}



27-October-2002 cse413-13-Inheritance © 2002 University of Washington 27

using the Animal interface in PetList

• Now we know that all of the animals will
satisfy the Animal interface, no matter what
kind of object they are

• So PetList can guarantee to the compiler that
the objects that it is dealing with are Animals,
no matter what else they might be
» consequently, there is a known set of methods

available for each of the objects, no matter what
class was used to build it



27-October-2002 cse413-13-Inheritance © 2002 University of Washington 28

Cast to Animal

• Tell the compiler that the ArrayList contains
objects that are Animals

public void dine() {
for (int i=0; i<theBunch.size(); i++) {

Animal pet = (Animal)theBunch.get(i);
pet.eat(2*pet.getMealSize());

}
}



27-October-2002 cse413-13-Inheritance © 2002 University of Washington 29

Relationships between classes

• Classes can be related via composition
» This is often referred to as the “has-a” relationship
» eg, a PetList has a list in an ArrayList of Animals

• Classes can also be related via inheritance
» This is often referred to as the “is-a” relationship
» eg, an ArrayList is an AbstractList



27-October-2002 cse413-13-Inheritance © 2002 University of Washington 30

PetList has a list of Animals

PetList
ArrayList theBunch

ArrayList
int size

item 0

item 1

item 2

etc

Dog

Sparrow

Cat



ArrayList is a AbstractList

is a

is a

is a



27-October-2002 cse413-13-Inheritance © 2002 University of Washington 32

Why use inheritance?
• Code simplification

» Avoid doing the same operation in two places
» Avoid storing “matching state” in two places

• Code simplification
» We can deal with objects based on their common

behavior, and don’t need to have special cases for
each subtype

• Code simplification
» Lots of elegant code has already been written - use

it, don’t try to rewrite everything from scratch



27-October-2002 cse413-13-Inheritance © 2002 University of Washington 33

Reduce the need for duplicated code

• In our collection of pets:
» Dog has getMealSize() and eat(double w) methods
» Cat has getMealSize() and eat(double w) methods
» and they were implemented exactly the same way

• We can define a class named BasicAnimal that
implements these methods once, and then the
subclasses can extend it and add their own
implementations of other methods if they like



27-October-2002 cse413-13-Inheritance © 2002 University of Washington 34

BasicAnimal class



27-October-2002 cse413-13-Inheritance © 2002 University of Washington 35

Syntax of inheritance

• Specify inheritance relationship using extends

public abstract class BasicAnimal implements Animal {
…
public double getMealSize() {

return mealSize;
}

}

public class Dog extends BasicAnimal { …

• Dog can use existing BasicAnimal methods if desired



27-October-2002 cse413-13-Inheritance © 2002 University of Washington 36

Dog as a subclass of BasicAnimal



27-October-2002 cse413-13-Inheritance © 2002 University of Washington 37

Using the superclass constructor
• Constructor of the superclass is called to do much

(or all) of the initialization for the subclass

public class BasicAnimal implements Animal {
public BasicAnimal(String theName,double serving,double weight) {

name = theName;
mealSize = serving;
currentWeight = weight;
System.out.println("Created "+name);

}

public class Dog extends BasicAnimal {
public Dog(String theName) {

super(theName,0.5,20);
}
public Dog(String theName,double serving,double weight) {

super(theName,serving,weight);
}



27-October-2002 cse413-13-Inheritance © 2002 University of Washington 38

this() and super() as constructors
• You can use an alias to call another constructor

» super(...) to call a superclass constructor
» this(…) to call another constructor from same class

• The call to the other constructor must be the first
line of the constructor
» If neither this() nor super() is the first line in a

constructor, a call to super() is inserted automatically by
the compiler.  This call takes no arguments.  If the
superclass has no constructor that takes no arguments,
the class will not compile.



27-October-2002 cse413-13-Inheritance © 2002 University of Washington 39

Overriding methods
• Overriding methods is how a subclass refines or

extends the behavior of a superclass method
• Manager and Executive classes extend Employee
• How do we specify different behavior for

Managers and Executives?
» Employee:

double pay() {return hours*rate + overtime*(rate+5.00);}
» Manager:

double pay() {return hours*rate;}
» Executive:

double pay() {return salary + bonus;}



27-October-2002 cse413-13-Inheritance © 2002 University of Washington 40

Overriding methods

public class Employee {

// other stuff

public float pay() {

return hours*rate + overtime*(rate+5.00);

}

}

public class Manager extends Employee {

// other stuff

public float pay() {

return hours*rate;

}

}



27-October-2002 cse413-13-Inheritance © 2002 University of Washington 41

instanceof

• Used to test an object for class membership

• One way to ensure that a cast will succeed
• Tests for a relationship anywhere along the

hierarchy
» Also tests whether a class implements an interface

• What class must <classname> represent for the
following expression to be true always?

if (v instanceof <classname>) { … }

if (bunch.get(i) instanceof Dog) {…}



27-October-2002 cse413-13-Inheritance © 2002 University of Washington 42

instanceof example with interface
ArrayList onStage = theStage.getActors();

for (int i=0; i<onStage.size(); i++) {

if (onStage.get(i) instanceof ClickableActor) {

ClickableActor clickee = (ClickableActor)onStage.get(i);

if (clickee.intersects(cursor)) {

clickee.doClickAction(theStage);

if (clickee == runButton) {

if (runButton.isEnabled()) {

theStage.animate();

} else {

theStage.quitAnimation();

}

}

}

}

}


