[1sts

CSE 413, Autumn 2002

Programming Languages

http://www.cs.washington.edu/education/courses/413/02au/

14-October-2002 cse413-07-Lists © 2002 University of Washington

Readings and References

* Reading

» Sections 2.2-2.2.1, Structure and Interpretation of
Computer Programs, by Abelson, Sussman, and Sussman

e Other References

» Section 6.3.2, Revised” Report on the Algorithmic
Language Scheme (R5RS)

14-October-2002 cse413-07-Lists © 2002 University of Washington

Pairs are the glue

* Using cons to build pairs, we can build data
structures of unlimited complexity

e We can roll our own

» 1f not too complex or if performance 1ssues

 We can adopt a standard and use 1t for the
basic elements of more complex structures

» l1sts

14-October-2002 cse413-07-Lists © 2002 University of Washington

Rational numbers with pairs

* An example of a fairly simple data structure
that could be built directly with pairs

(make-rat 1 2)

(define (make-rat n 4d)
(cons n 4))

(define (numer x) f K
(car x)) / &

(define (denom x)
(edr x))

14-October-2002 cse413-07-Lists © 2002 University of Washington

Extensibility

« What if we want to extend the data structure
somehow?

« What if we want to define a structure that has
more than two elements?

* We can use the pairs to glue pairs together in a
more general fashion and so allow more
general constructions

» L1sts

14-October-2002 cse413-07-Lists © 2002 University of Washington

Fundamental list structure

* By convention, a list 1s a sequence of linked pairs
» car of each pair is the data element

» cdr of each pair points to list tail or the empty list

¢ AN

in
ol
:

14-October-2002 cse413-07-Lists © 2002 University of Washington 6

[List construction

(define e (cons 1 (cons 2 (cons 3 '()))))

¢ AN

in
ol
;

(define e (list 1 2 3))

14-October-2002 cse413-07-Lists © 2002 University of Washington

procedure 1ist

(list a b c ...)

e 1ist returns a newly allocated list of i1ts arguments

» the arguments can be atomic items like numbers or quoted
symbols

» the arguments can be other lists
e The backbone structure of a list 1s always the same

» a sequence of linked pairs, ending with a pointer to null
(the empty list)

» the car element of each pair is the list item

» the list items can be other lists

14-October-2002 cse413-07-Lists © 2002 University of Washington

[1st structure

(define a (list 4 5 6)) (define b (list 7 a 8))
a
b
/p o 1.
2| [p]e ¥
v 7 ol e
5 »
v »
6 ¥
a—"> |esle 8
¥
4 ol e
¥
5 »
¥
6

14-October-2002 cse413-07-Lists © 2002 University of Washington

Rational numbers with lists

(make-rat 1 2)

(define (make-rat n d)
(list n 4))
(define (numer x) /’ q\

(car x))
1
(define (denom x) /’
(cadr x))
2

14-October-2002 cse413-07-Lists © 2002 University of Washington 10

Examples of list building

(cons 1 (cons 2 '()))

(cons 1 (list 2))
1 /
(list 1 2)
é

14-October-2002 cse413-07-Lists © 2002 University of Washington 11

[Lists and recursion

A list is zero or more connected pairs
* Each node 1s a pair

» Thus the parts of a list (this pair, following
pairs) are lists

* And so recursion 1s a natural way to express
list operations

14-October-2002 cse413-07-Lists © 2002 University of Washington

cdr down

* We can process each element in turn by
processing the first element 1n the list, then
recursively processing the rest of the list

base case
(define (length m)
(if (null? m) }

0 reduction ste
(+ 1 (length (cdr m))))) }4”/’—— b

14-October-2002 cse413-07-Lists © 2002 University of Washington

13

sum the items 1n a list

4’/
(add-items (list 2 5 4))

:

(define (add-items m)
(if (null? m)
0
(+ (car m) (add-items (cdr m)))))

(+ 2 (+ 5 (+ 4 0)))

14-October-2002 cse413-07-Lists © 2002 University of Washington

14

cons up

* We can build a list to return to the caller piece
by piece as we go along through the mput list

(define (reverse m)

(define (iter shrnk

(i1f (null? shrnk)

grow
(iter (cdr shrnk)((cons (car shrnk) grow))))
(iter m '()))

14-October-2002 cse413-07-Lists © 2002 University of Washington

15

multiply each list element by 2

(double-all (list 4 0 -3))

o e
¥
4 ole
¥
0 »
(define (double-all m) 4
(if (null? m) -3
' ()
(cons (* 2 (car m)) (double-all (cdr m)))))
(cons 8 (cons 0 (cons -6 '()))) /’ b
8 ole
¥
0 »
¥
-6

14-October-2002 cse413-07-Lists © 2002 University of Washington 16

Variable number of arguments

* We can define a procedure that has zero or
more required parameters, plus provision for a
variable number of parameters to follow

» The required parameters are named 1n the define
statement as usual

nmn

» They are followed by a "." and a single parameter
name
* At runtime, the single parameter name will be
given a list of all the remaining actual
parameter values

14-October-2002 cse413-07-Lists © 2002 University of Washington 17

(same-parity x . V)

(define (same-parity x . y)

> (same-parity 1 2 3 4 5 6 7)
(1 35 7)

> (same-parity 2 3 4 5 6 7)
(2 4 6)

>

The first argument value 1s assigned to X,
all the rest are assigned as a listto y

14-October-2002 cse413-07-Lists © 2002 University of Washington

18

map

* We can use the general purpose function map

to map over the elements of a list and apply
some function to them

(define (map p m)
(if (null? m)
' ()
(cons (p (car m))
(map p (cdr m)))))

(define (double-all m)
(map (lambda (x) (* 2 x)) m))

14-October-2002 cse413-07-Lists © 2002 University of Washington

19

