Lambda

CSE 413, Autumn 2002
Programming Languages

http://www.cs.washington.edu/education/courses/413/02au/
Readings and References

• Reading
 » Section 1.3, *Structure and Interpretation of Computer Programs*, by Abelson, Sussman, and Sussman

• Other References
 » Section 4.1.4, *Revised 5 Report on the Algorithmic Language Scheme (R5RS)*
Scheme procedures are "first class"

- Procedures can be manipulated like the other data types in Scheme
 - A variable can have a value that is a procedure
 - A procedure value can be passed as an argument to another procedure
 - A procedure value can be returned as the result of another procedure
 - A procedure value can be included in a data structure
Recall: Define and name a procedure

- `(define 〈name〉 〈formal params〉) 〈body〉)
 » `define` - special form
 » `name` - the name that the procedure is bound to
 » `formal params` - names used within the body of procedure
 » `body` - expression (or sequence of expressions) that will be evaluated when the procedure is called.
 » The result of the last expression in the body will be returned as the result of the procedure call
define and name

(define (area-of-disk r)
 (* pi (* r r)))

» define a procedure that takes one argument \(r \) and calculates \((* \pi (* \ r \ r)) \)
» bind that procedure to the name `area-of-disk`

• The name of the variable that holds the procedure and the actual body of the procedure are separate issues
Special form: \texttt{lambda}

- \texttt{(lambda (formals) body)}
- A lambda expression evaluates to a procedure
 - it evaluates to a procedure that will later be applied to some arguments producing a result
- \texttt{formals}
 - formal argument list that the procedure expects
- \texttt{body}
 - sequence of one or more expressions
 - the value of the last expression is the value returned when the procedure is actually called
"Define and name" with lambda

(define area-of-disk
 (lambda (r)
 (* pi (* r r))))

» define a procedure that takes one argument r and calculates (* pi (* r r))
» bind that procedure to the name area-of-disk

• The name of the variable that holds the procedure and the actual body of the procedure are separate issues
"Define and use" with lambda

- \(((\text{lambda } (r) (* \pi r r)) \ 1)\)

 » define a procedure that takes one argument \(r\) and calculates \(* \pi r r\)
 » apply that procedure to the argument value 1
 » return the result => \(\pi\)

- The body of the procedure is applied directly to the argument and is never named at all
Separating procedures from names

- We can now start to treat procedures as regular data items, just like numbers
 - and procedures are more powerful because they express behavior, not just state
- We can now write procedures that operate on other procedures - applicative programming
 - higher order functions
 - functions that take functions as arguments and do standard things with them
define min-fx-gx

; define a procedure that takes two functions
; and a numeric value, and returns the min of
; f(x) and g(x)

(define (identity x) x)

(define (square x)
 (* x x))

(define (cube x)
 (* x x x))

(define (min-fx-gx f g x)
 (min (f x) (g x)))
(define (min-fx-gx f g x)
 (min (f x) (g x)))

(min-fx-gx square cube 2) ; (min 4 8) => 4
(min-fx-gx square cube -2) ; (min 4 -8) => -8
(min-fx-gx identity cube 2) ; (min 2 8) => 2
(min-fx-gx identity cube (/ 1 2)) ; (min 1/2 1/8) => 1/8
define s-fx-gx

; define a procedure that takes:
; s - a combining function that expects two numeric arguments
; and returns a single numeric value
; f, g - two functions that take a single numeric argument and
; return a single numeric value f(x) or g(x)
; x - the point at which to evaluate f(x) and g(x)
; s-fx-gx returns s(f(x),g(x))

(define identity
 (lambda (x) x))

(define square
 (lambda (x) (* x x)))

(define cube
 (lambda (x) (* x x x)))

(define (s-fx-gx s f g x)
 (s (f x) (g x)))
apply s-fx-gx

(define (s-fx-gx s f g x)
 (s (f x) (g x)))

(s-fx-gx min square cube 2) ; => (min 4 8) = 4
(s-fx-gx min square cube -2) ; => (min 4 -8) = -8
(s-fx-gx + square cube 2) ; => (+ 2 8) = 12
(s-fx-gx - cube square 3) ; => (- 27 9) = 18
apply s-fx-gx

\[
\text{(define (s-fx-gx s f g x)}
\text{(s (f x) (g x)))}
\]

\[
\text{(s-fx-gx}
\text{ (lambda (x y) (expt x y))}
\text{ identity}
\text{ identity}
\text{ 2)}
\text{ ; => (expt 2 2) = 4}
\]

\[
\text{(s-fx-gx}
\text{ (lambda (x y) (/ x y))}
\text{ cube}
\text{ square}
\text{ 14)}
\text{ ; => (/ x^3 x^2) = x = 14}
\]

\[
\text{(s-fx-gx}
\text{ (lambda (x y) (/ (+ x y) 2))}
\text{ (lambda (x) (+ x 1))}
\text{ (lambda (e) (- e 1))}
\text{ 128)}
\text{ ; => (avg (+ x 1) (- x 1)) => x = 128}
\]
Example: summation

- We can always define specific functions for specific applications

\[
\sum_{a}^{b} i^3
\]

\[
\frac{1}{1\cdot3} + \frac{1}{5\cdot7} + \frac{1}{9\cdot11} + \ldots
\]

```
(define (sum-cubes a b)
  (if (> a b)
      0
      (+ (cube a) (sum-cubes (+ a 1) b))))
```

```
(define (pi-sum a b)
  (if (> a b)
      0
      (+ (/ 1.0 (* a (+ a 2))) (pi-sum (+ a 4) b))))
```
Generalize?

- Where can we generalize to perhaps provide broader application?

\[
\text{(define (sum-cubes a b)}
\text{ (if (> a b)}
\text{ 0)
\text{ (+ (cube a) (sum-cubes (+ a 1) b)))})
\]

the term we are adding to the sum

\[
\text{(define (pi-sum a b)}
\text{ (if (> a b)}
\text{ 0)
\text{ (+ (/ 1.0 (* a (+ a 2))) (pi-sum (+ a 4) b)))})
\]

the next index value
General purpose sum

- Define the sum function so that it takes functions as arguments that calculate the current term and the next index

; a general purpose sum function
; args:
; term - calculate the term in the sum from a single arg x
; a - lower summation limit
; next - calculate next index value given current index value
; b - upper summation limit

(define (sum term a next b)
 (if (> a b)
 0
 (+ (term a)
 (sum term (next a) next b)))))
Redefine sum-cubes using sum

\[
\begin{align*}
\text{(define (sum term a next b))} \\
\text{ (if (> a b) 0)} \\
\text{ (+ (term a) (sum term (next a) next b)))}
\end{align*}
\]

\[
\begin{align*}
\text{(define (inc i) (+ i 1))}
\end{align*}
\]

\[
\begin{align*}
\text{(define (cube x) (* x x x))}
\end{align*}
\]

\[
\begin{align*}
\text{(define (sum-cubes a b) (sum cube a inc b))}
\end{align*}
\]
Redefine pi-sum using sum

\[
(\text{define } (\text{sum } \text{term } a \text{ next } b) \\
(\text{if } (> a b) \\
\quad 0 \\
\quad (+ (\text{term } a) \\
\quad \quad (\text{sum } \text{term } (\text{next } a) \text{ next } b))))
\]

\[
(\text{define } (\text{pi-sum } a \text{ b}) \\
(\text{define } (\text{pi-term } i) \\
\quad (/ 1.0 (* i (+ i 2)))) \\
(\text{define } (\text{pi-next } i) \\
\quad (+ i 4)) \\
(\text{sum } \text{pi-term } a \text{ pi-next } b))
\]
Redefine pi-sum using sum and lambda

(define (sum term a next b)
 (if (> a b)
 0
 (+ (term a)
 (sum term (next a) next b)))))

; define pi-sum without explicit aux functions

(define (pi-sum2 a b)
 (sum
 (lambda (i) (/ 1.0 (* i (+ i 2))))
 a
 (lambda (i) (+ i 4))
 b))
Define "double"

• Define a procedure `double`
 » takes a procedure of one argument as its argument
 ie, a procedure `f` that can be applied `(f x)`
 » returns a procedure that applies the original procedure twice
 ie, a procedure `g` that is `(f (f x))`

• For example
 » `(double inc)` returns a procedure `(inc (inc x))`
The parts of `double`

`double` takes one argument, a function `f`

`double` returns a function

\[
\text{(define (double } f) \text{)} \rightarrow \text{(lambda } (z) \text{)} \rightarrow (f (f z)))
\]

the function that `double` returns takes one argument

the function that `double` returns is `f` composed with itself
Evaluate expressions with \texttt{double}

\begin{verbatim}
(define (double f)
 (lambda (z)
 (f (f z))))

(define (inc x) (+ x 1))

(define (plus4 x)
 ((double (double inc)) x))

((double inc) 3) ; 2 + 3 = 5

(plus4 10) ; 10+4 = 14
\end{verbatim}