More Procedures

CSE 413, Autumn 2002
Programming Languages

http://www.cs.washington.edu/education/courses/413/02au/

Abstraction is a good thing

- The span of absolute judgment and the span of immediate memory impose severe limitations on the amount of information that we are able to receive, process, and remember.
- By organizing the stimulus input simultaneously into several dimensions and successively into a sequence or chunks, we manage to break (or at least stretch) this informational bottleneck.
 » Miller, 1956. see OtherLinks page for reference

A clean abstraction is a good thing

- One of the interesting and difficult things about software design is deciding how to chop up the system design in a "logical" fashion
- "Common sense" design is not always obvious
- Two useful goals
 » Increase Cohesion
 » Decrease Coupling

Readings and References

- Reading
 » Section 1.2-1.2.2, Structure and Interpretation of Computer Programs, by Abelson, Sussman, and Sussman

- Other References
 » Section 3, Revised\(^5\) Report on the Algorithmic Language Scheme (R5RS)
Cohesion and Coupling

- **Cohesion** describes the degree to which the various parts of a single conceptual object relate to one another in a logical way
 - a "cohesive design" is a good thing
- **Coupling** describes the degree to which different conceptual objects are tied together through implementation details and assumptions
 - a "highly coupled design" is a bad thing

Name space pollution

- One common problem that contributes to coupling between modules is naming
- As much as possible, you want to keep the details of your implementation from leaking out into the outside world
 - reduce conflict with other modules and reduce the complexity of your own design
 - make it possible to replace your implementation entirely with a new one that has the same external interface but completely different internals

Procedure names

- Recall that sqrta.scm defined a number of small auxiliary procedures to accomplish the task of calculating the square root
 - sqrt-iter, good-enough?, improve
- None of these procedures are of specific interest to the outside world
 - they interfere with other designs that want to build other procedures with the same names
 - the prefix "sqrt-" is clutter in our own design

Helper definitions local to procedure

```
(define (sqrtb x)
  (define (good-enough? guess x)
    (< (abs (- (* guess guess) x)) 0.001))
  (define (improve guess x)
    (/ (+ guess (/ x guess)) 2.0))
  (define (iter guess x)
    (if (good-enough? guess x)
        guess
        (iter (improve guess x) x)))
  (iter 1.0 x))
```

; Square root using Newton's method
; using internal definitions to make
; the helper procedures local.
Local names

- The names of the helper procedures are now local to the define statement for sqrt
- The scope of the names is the define block
- Notice that the scope of the names of the formal parameters of each local procedure is the body of that procedure

 » the parameter names of a procedure are local to the body of the procedure

Parameter names are local

(define (sqrtc x)
 (define (good-enough? ga xa)
 (< (abs (- (* ga ga) xa)) 0.001))
 (define (improve gb xb)
 (/ (+ gb (/ xb gb)) 2.0))
 (define (iter gc xc)
 (if (good-enough? gc xc)
 gc
 (iter (improve gc xc) xc)))
 (iter 1.0 x))

; Square root using Newton's method
; using internal definitions to make the helper procedures local.

Refer to variables in enclosing scope

(define (sqrtc x)
 (define (good-enough? guess x)
 (< (abs (- (* guess guess) x)) 0.001))
 (define (improve guess x)
 (/ (+ guess (/ x guess)) 2.0))
 (define (iter guess gc)
 (if (good-enough? guess gc)
 guess
 (iter (improve guess gc) xc)))
 (iter 1.0 x))

; xc is supplied to iter as a parameter.
; The value of that parameter is "x".
; iter calls itself recursively, and supplies the same value of "x" that it was given.
; Therefore, the value of "xc" is always "x", and we don't need to pass it as a parameter to procedure iter.

Note that "x" is defined in the outer block and so it is visible to all of the helper procedures.

Do we need to pass x around from procedure to procedure?
Refer to variables in enclosing scope

```scheme
(define (sqrtd1 x)
  (define (good-enough? ga xa)
    (< (abs (- (* ga ga) xa)) 0.001))

  (define (improve gb xb)
    (/ (+ gb (/ xb gb)) 2.0))

  (define (iter gc)
    (if (good-enough? gc x)
      gc
      (iter (improve gc x))))

  (iter 1.0))
```

xa is supplied to good-enough? as a parameter.
- The value of that parameter is always "x".
- Therefore, we don't need to pass it as a parameter to procedure good-enough?.

xb is supplied to improve as a parameter. The value of that parameter is always "x".
- Therefore, we don't need to pass it as a parameter to procedure improve.

All x parameters replaced with global x

```scheme
(define (sqrtd2 x)
  (define (good-enough? ga)
    (< (abs (- (* ga ga) x)) 0.001))

  (define (improve gb)
    (/ (+ gb (/ x gb)) 2.0))

  (define (iter gc)
    (if (good-enough? gc)
      gc
      (iter (improve gc))))

  (iter 1.0))
```

; Square root using Newton's method.
; Removed all the x parameters since they refer to the globally available x in every case.

Lexical scoping

- The preceding changes to the sqrt definition are examples of the use of *lexical scoping*
- Free variables (those that are not bound by the parameter list or a local define) are taken to refer to bindings made by enclosing procedure definitions
- The bindings are looked up in the environment in which the procedure was defined

Recursion and Iteration

- Definitions
 - procedure (the text definition)
 - process (the actual live action events)
- A recursive procedure (one that calls itself) does not necessarily generate a recursive process (one that has an open deferred operations remaining for each call)
- Many languages make the two always equivalent, but it is not necessary
Two implementations of factorial

; linear recursive
(define (facta n)
 (if (= n 1)
 1
 (* n (facta (- n 1)))))

; iterative
(define (factb n)
 (define (iter prod count)
 (if (> count n)
 prod
 (iter (* count prod) (+ count 1))))
 (iter 1 1))

We don't know what (facta (- n 1)) is until we have worked our way all the way down to facta(1). All the multiplications are deferred operations.

We are counting up. We know what 1*1 is, and we know what 1+1 is. So we can go directly from (iter 1 1) to (iter 1 2) to (iter 2 3) to (iter 6 4) etc.

Two implementations of simple counter

(define (print x)
 (display x))

; iterative process
(define (count1 x)
 (cond ((= x 0) (print x))
 (else (print x)
 (count1 (- x 1)))))

; linear recursive process
(define (count2 x)
 (cond ((= x 0) (print x))
 (else (count2 (- x 1))
 (print x)))))

Difference

• The key difference between the linear recursive process and the iterative process is this
 » recursive - there are operations not yet completed which must be remembered by the system running the program - generally on a stack
 » iterative - all of the state for the block of code can be captured in a finite set of variables - these variables are the arguments to the iterating function

Two implementations of factorial

; linear recursive
(define (facta n)
 (if (= n 1)
 1
 (* n (facta (- n 1)))))

; iterative
(define (factb n)
 (define (iter prod count)
 (if (> count n)
 prod
 (iter (* count prod) (+ count 1))))
 (iter 1 1))

We don't know what (facta (- n 1)) is until we have worked our way all the way down to facta(1). All the multiplications are deferred operations.

We are counting up. We know what 1*1 is, and we know what 1+1 is. So we can go directly from (iter 1 1) to (iter 1 2) to (iter 2 3) to (iter 6 4) etc.

Two implementations of simple counter

(define (print x)
 (display x))

; iterative process
(define (count1 x)
 (cond ((= x 0) (print x))
 (else (print x)
 (count1 (- x 1)))))

; linear recursive process
(define (count2 x)
 (cond ((= x 0) (print x))
 (else (count2 (- x 1))
 (print x)))))

Fibonacci Numbers

• Recall definition of Fibonacci numbers \(F_n \)

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

• First two are defined explicitly
• Rest are sum of preceding two
\(F_n = F_{n-1} + F_{n-2} \) \((n > 1) \)
• sequence sometimes starts with 1, not 0

Leonardo Pisano
Fibonacci (1170-1250)
Recursive Calls of Fibonacci Procedure

N
N-1
N-2
N-3
N-4

• Re-computes fib(N-i) multiple times

Two implementations of Fibonacci

; tree recursive

(define (fib-a n)
 (cond ((= n 0) 0)
 ((= n 1) 1)
 (else (+ (fib-a (- n 1))
 (fib-b (- n 2))))))

; iterative

(define (fib-b n)
 (define (iter a b count)
 (if (= count 0)
 b
 (iter (+ a b) a (- count 1))))
 (iter 1 0 n))

Two implementations of Fibonacci

// tree recursive
int fib(int i) {
 if (i < 0) return 0;
 if (i == 0 || i == 1)
 return 1;
 else
 return fib(i-1)+fib(i-2);
}

// iterative
int fib_iter(int i) {
 int fib0 = 1, fib1 = 1, fibj = 1;
 if (i < 0) return 0;
 for (int j = 2; j <= i; j++) {
 fibj = fib0 + fib1;
 fib0 = fib1;
 fib1 = fibj;
 }
 return fibj;
}