
1

5/7/99 1

CSE 413 Spring 2000

Notes on Java Threads

5/7/99 2

Threads
• Thread = Execution of one sequence of

instructions (including function/method calls,
conditionals, loops).

• Normal Java program executes in a thread created
for main (application) or borrowed from the
browser (applets).

• Class Thread can be used to create additional
threads that execute concurrently.

• Each new thread is associated with (controlled by)
a Thread object.

5/7/99 3

Single Thread Example
class Foo {

void run() {
for (int i=0; i<100; i++)

System.out.println(“foo ”);
}

}
class Bar {

public static void main(char[]args) {
Foo foo = new Foo();
foo.run();
for (int i=0; i<100; i++)

System.out.println(“bar ”);
}

}

• Prints 100 “foo”s followed by 100 “bar”s

5/7/99 4

Extending Class Thread
• Class Thread can be extended to create objects

that run concurrently in their own thread.
• Execution begins in method run of the new class.

class Foo extends Thread {
void run() {

for (int i=0; i<100; i++)
System.out.println(“foo ”);

}
}

• Foo.run overrides a (basically) empty method
run in class Thread.

5/7/99 5

Concurrent Execution
• To begin concurrent execution, call method
start of a Thread object. This sets up the new
thread, then calls the object’s run method.

class Bar {
public static void main(char[]args) {

Foo foo = new Foo();
foo.start();
for (int i=0; i<100; i++)

System.out.println(“bar ”);
}

}

• Prints 100 “foo”s and 100 “bar”s in some
unpredictable order

5/7/99 6

Uses for Threads
• Asynchronous or nonblocking I/O

– Continue execution in one thread while waiting for I/O
to complete or time out in another.

• Timers
– Wait for an interval to expire, then cause something to

happen (examples: animations; do something if the user
doesn’t respond after a reasonable interval, …)

• Process multiple tasks simultaneously
– Handle GUI in one thread while doing extended

calculations in another.
• Parallel algorithms

– If the JVM supports it, run parts of the computation
concurrently on different processors.

2

5/7/99 7

Runnable Classes
• There are many situations where we want to

execute a computation concurrently, but in a class
that’s not a subclass of Thread.

• We still need a Thread object to create and
control the thread.

• A thread can begin execution in any class that
implements Runnable and contains a run
method.

public interface Runnable {
public abstract void run();

}

5/7/99 8

Using Runnable
• This class executes one of its methods in a

separate thread

class FooBar implements Runnable {
public void foo() {

for (int i=0; i<100; i++)
System.out.println(“foo ”);

}

public void bar() {
for (int i=0; i<100; i++)

System.out.println(“bar ”);
}

...

5/7/99 9

Using Runnable (cont.)
public void run() {

foo();
}
public static void main(char[]args) {

Thread t = new Thread(this);
t.start();
bar();

}
}

• t.start() creates a new thread, then executes
run() in that thread.

• Meanwhile, the original thread calls bar().
• Prints 100 “foo”s and 100 “bar”s in some

unpredictable order
5/7/99 10

Synchronization
• Since threads may interleave execution in any

order, we may need to control access to objects to
ensure only one thread at a time can update related
variables.

class C {
int x,y;
public void setXY(int x, int x) {
this.x = x; this.y = y;

}
public int sumXY() { return x+y; }

}

• What happens if one thread executes sumXY while
another thread is halfway through executing
setXY on the same object?

5/7/99 11

synchronized methods
• Every object has an associated lock
• We can require threads to acquire the lock before

executing one of the object’s methods by
declaring the method to be synchronized.

• A synchronized method automatically
acquires the object’s lock when it is called. Other
threads are blocked until the lock is released
automatically when the synchronized method
terminates.

5/7/99 12

synchronized methods
class C {

int x,y;
public synchronized void setXY(int x, int x) {
this.x = x; this.y = y;

}
public synchronized int sumXY() { return x+y;
}

}

• If some thread is executing setXY or sumXY, no
other thread can execute either of those methods
until the first thread releases the lock.

• Methods wait and notify are available to
temporarily release the lock and regain it as
needed.

