
1

4/23/00 1

CSE 413 Spring 2000

Java Overview

4/23/00 2

References
• Concise overviews

– Java in a Nutshell (O’Reilly)
– Budd, Understanding Object-Oriented Programming

with Java (Addison-Wesley)
• Longer Tutorials

– Arnold & Gosling, The Java Programming Language
(2nd ed, A-W)

– Exploring Java (O’Reilly)
– Core Java (Prentice-Hall)
– The Java Tutorial (A-W)*

• For Language Lawyers
– The Java Language Specification Gosling, et al (A-W)*

• Many online sources; see course web for links

* also available online at www.java.sun.com

4/23/00 3

Some History
• 1993 Oak project at Sun
• 1995 Oak becomes Java; every major web player

announces support
• 1996 Java 1.0 available
• 1997 (March) Java 1.1 - some language changes

and much larger library, including new event
handling GUI model (AWT)

• 1997 (September) Java 1.2 beta - including Swing
GUI package

• 1998 (October) Java 1.2 final
• 2000 (April) Java 1.3 final

4/23/00 4

Design Goals
• Support secure, high-performance, robust

applications running as-is on multiple platforms
and over networks

• “Architecture-neutral”, portable, allow dynamic
updates and adapt to new environments

• Look enough like C++ for programmer comfort
• Support object-oriented programming
• Support concurrency (multithreading)
• Simplicity

4/23/00 5

Hello World in Java

public class HelloWorld {
public static void main (String [] args) {

System.out.println(“Hello World”);
}

}

4/23/00 6

Classes
• Everything in Java is a member of some class

– No external (global) functions or variables
• Classes may contain methods and data members
• Class members may be

– non-static: one copy for each instance of the class
– static: single copy associated with the class, not with

any specific instances.

“Java has no functions. Object-oriented programming
supersedes functional and procedural styles. Mixing the
two styles just leads to confusion and dilutes the purity of
an object-oriented language.”

Gosling & McGilton Java White Paper

2

4/23/00 7

Hello World Revisited
public class HelloWorld {

public static void main (String [] args) {
System.out.println(“Hello World”);

}
}
• Every class may have a main method
• Execution begins in main of a designated class
• Class Xyzzy should be in file Xyzzy.java

%javac HelloWorld.java
%java Helloworld
Hello World

4/23/00 8

Command Line Arguments
public class PrintArgs {

public static void main (String [] args) {
for (int k=0; k < args.length; k++)

System.out.print(args[k] + “ ”);
System.out.println();

}
}

%javac PrintArgs.java
%java PrintArgs Testing one, two, three
Testing one, two, three

4/23/00 9

Primitive Data Types
• 2’s complement signed integer

– int (32 bits), byte (8), short (16), long (64)
– constants are normally type int

• IEEE floating point
– double (64 bits), float (32)
– floating constants are normally type double

• Unicode characters: char (16 bits)
• Logical: boolean

– constants are true, false
– not interchangeable with int

• None of these are “implementation-defined” or
“implementation-dependent”

4/23/00 10

Vars, Expressions & Assignment
• Almost same as C/C++

int k = 17; boolean maybe; double x=42.0
k = 2 * k; maybe = k > 17;

• Declaration initializers are optional. If omitted,
– Fields in class instances initialized to 0, false, null.
– Local vars in methods not initialized by default;

compiler complains if use before initalize is possible
• Assignment does coercion if no information lost

double y = (k+6)/2;
• Assignment that could lose information requires

explicit cast
k = (int) x * 1.3 / (x-2)

4/23/00 11

Basic statements
• if, while, for, and switch work as in C/C++

– Use { } to create compound statements
– Logical && and || are short-circuit
– switch requires explicit break if fall-through to next

case is not desired; if default case is not provided and
no case label matches, execution silently proceeds with
next statement.

if (x < y) { tmp=x; x=y; y=tmp;} else x=0;
while (k < n && a[k] != x)

k++;

4/23/00 12

Class Definitions
• Basic use is to define template for instances

public class Blob {
private int val; // Blob state
public int getVal() // access methods

{ return val; }
public void setVal(int val)

{ this.val = val; }
// yield string representation of this Blob
public String toString()

{ return “Blob: val = ” + val; }
}

• toString() automatically used to cast object to
String when used in context that requires String

3

4/23/00 13

Visibility
• Class members can be preceded by a qualifier to

indicate accessibility
– public - accessible anywhere the class can be accessed
– private - only accessible inside the class
– If nothing is specified, the field can be referenced

anywhere in the same package (more later).
– protected - same as package visibility, and also visible

in classes that extend this class.

4/23/00 14

Instance Creation and References
• All variables that do not have a primitive type are

references. Objects are only created by explicit
allocation.

Blob bob; // no blob allocated yet
bob = new Blob(); // Blob allocated here
bob.setVal(42);
int k = bob.getVal();
System.out.println(“bob is ” + bob);

4/23/00 15

References and Methods
• Dot notation is used to select methods and fields;

implicit dereference (no -> as in C/C++).
• No pointer arithmetic; no & operator to generate

the address of arbitrary variable; can’t create
pointers from random bits.
– “Java has no pointers”

• All method parameters are call-by-value (copy of
primitive value or object reference)

• Methods can be overloaded (different methods
with same name but different number or types of
parameters).

4/23/00 16

Object Allocation
• A variable declared as class X has type “reference

to X”. No object is created by such a declaration.
• Declaration and object creation can be combined.

Blob bob = new Blob();
• The constant null belongs to all reference types

and refers to nothing.
• If reference r is null, then selecting a field from r

(r.fieldname) throws a NullPointerException.
• Storage occupied by an object is dynamically

reclaimed when the object is no longer accessible
(automatic garbage collection).

4/23/00 17

Constructors
• Constructor(s) can be provided to initialize objects

when they are created. Constructors can be
overloaded and can call other constructors.

class Blob {
int val;
// constructors
Blob (int initial) { val = initial; }
Blob () { this(17); }

}

4/23/00 18

Static Methods and Fields
• static class members are most commonly used for

data and methods that are not naturally associated
with a specific class instance.

class Math { // standard Java Math class
static double sqrt(double x) { … }
static double sin(double x) { … }

}
• Static methods are referenced via the class name

dist = Math.sqrt(x*x + y*y);

4

4/23/00 19

Symbolic Constants
• A class member may be qualified as final.

– For data, it means the variable must be initialized when
declared and cannot be changed after that.

– For methods, it means the method cannot be overridden
in a derived class.

– In either case, the compiler can take advantage of this
to inline the constant value or method code.
class Math { // standard Java Math class

static final double PI = 3.1415926535;
static final double E = 2.71828182845;

}
…
area = Math.PI * r * r;

4/23/00 20

Arrays
• Arrays are dynamically allocated. Declaring an

array variable only creates a reference variable; it
does not actually allocate the array.

double[] a;
a = new double[6]
for (int k = 0; k < 6; k++)

a[k] = 2*k;

4/23/00 21

Array Notess
• Arrays are 0-origin, as in C/C++
• Arrays are also objects, with one constant member

– If a is an array, a.length is its length
• An IndexOutOfBoundsException is thrown if a

subscript is < 0 or >= the array length.
• The brackets indicating an array type may also

appear after the variable name, as in C/C++
int a[] = new int[100];

4/23/00 22

2-D Arrays
• A 2-D array is really a 1-D array of references to

1-D array rows. The allocation
double[][] matrix = new double[10][20];

is really shorthand for
double [] [] matrix = new double[10][];
for (int k = 0; k < 10; k++)

matrix[k] = new double[20];
• Array elements are accessed in the usual way

for (int r = 0; r < 10; r++)
for (int c = 0; c < 20; c++)

matrix[r][c] = 0.0;

4/23/00 23

Arrays of Objects
• If the array elements have an object type, the

objects must be created individually.
Blob [] list;
list = new Blob[10];
for (int k = 0; k < 10; k++)

list[k] = new Blob;

4/23/00 24

Strings
• A character string “abc” is an instance of class

String, and is a read-only constant.
– Strings are objects; they are not arrays of chars.
– There is no ‘\0’ byte at the end
– If s is a string, s.length() is its length, and s.charAt(k)

is the character in position k.
– Class String contains many useful string processing

functions.

5

4/23/00 25

Derived Classes
• A class definition may extend (be derived from) a

single parent class (single inheritance).
class Point {

int h, v;
}

class ColorPoint extends Point {
Color c;

}

4/23/00 26

Derived Classes (cont.)
• All of the usual object-oriented notions are

supported, including inheritance of fields and
methods from superclasses and overriding.

• Inside a method, this refers to the current object;
super refers to the current object viewed as an
instance of the parent class.

• There is a single class Object at the root of the
class hierarchy.
– If a class declaration does not explicitly extend some

class, it implicitly extends Object.
• A class may be declared abstract if it is an

interface that must be extended to be used.
• A final class may not be extended further.

4/23/00 27

Wrapper Classes for Basic Types
• For each basic type (int, double, etc.) there is a

corresponding class (Integer, Double, etc.) that is
an object version of that type.
– Integer(17) is an object representation of the int 17.
– Particularly useful with container classes that can only

hold objects (Vector, HashTable, etc.)
– Wrapper classes also contain many useful utility

functions and constants.
• if (k < (Integer.MAX_VALUE/10)) …
• if (Character.isLowerCase(ch)) …

4/23/00 28

Interfaces
• Interfaces allow specification of constants and

methods independently of the class hierarchy.
• Interfaces may extend other interfaces, but since

they are pure specification, no implementation is
inherited.

interface AbsType {
static final int one = 1;
static final int two = 2;
void f(int a, int b);
double g();

}

4/23/00 29

Interfaces (cont)
• A class may implement as many interfaces as

desired.
– Full implementation of all methods in the interface

must be provided by the class or inherited from a parent
class. Nothing is inherited from the interface.

– Gives most of the useful effects of multiple inheritance
• Allows otherwise unrelated classes to implement common

behavior

– Widely used in the Java user interface to handle events
(MouseMotionListener, ActionListener, many
others)

4/23/00 30

Object Compare and Copy
• Default assignment and comparison only copies or

compares references (shallow operations)
Blob b = new Blob();
Blob c = new Blob();
if (b==c) System.out.println(“Something wrong”);
c = b;
b.setVal(100);
System.out.println(c.getval());

6

4/23/00 31

Deep Compare and Copy
• All classes inherit equals and clone from Object

– Default versions do a shallow compare/copy
– Override if a deep compare/copy is desired
– To override clone, a class must also implement the

Cloneable interface.
• Intended meaning of a.equals(b) is that a and b

are “equal” in whatever sense is appropriate for
the class of a and b.

• b.clone should create a new “copy” of b and
return a reference to it.

4/23/00 32

Exceptions
• Java has an extensive exception handling

mechanism. Basic idea
try {

thisMightExplode(x,y,z);
} catch (Exception e) {

<deal with the problem>
}

• If an exception happens, a
throw new anExceptionClass(parameters);

statement will cause the call chain to unwind until
a catch clause that matches the thrown object is
found.

4/23/00 33

Exceptions (cont)
• Multiple catch clauses can be used to selectively

handle exceptions
try {

tryToReadData(x,y,z);
} catch (IOException e) {

<deal with I/O problem>
} catch (Exception e) {

<deal with other exceptions>
}

• If a method does something that might generate an
exception, it must either handle it, or declare that it
might throw that exception (throws clause).

4/23/00 34

Packages
• Packages provide a way to partition the global

class namespace.
• A class is placed in a package by including at the

beginning of class source file
package widget;

• A class in another package can use items from a
package by explicitly qualifying the item name

widget.Blob b = new widget.Blob();
or by importing names from the package

import widget.*;
…
Blob b = new Blob();

4/23/00 35

Packages (cont)
• Package names are grouped into hierarchies by

using package names with embedded dots
– java.util, java.awt, java.awt.image

• Parts of a package hierarchy can be selectively
imported.

• import is not transitive (unlike C/C++ #include)
• If a class definition does not include a package

statement, that class is part of a default
anonymous package.
– Useful for small projects

4/23/00 36

Streams
• Stream = flow of data (bytes or characters)
• Can be associated with files, communication links,

keyboard/screen/printer
• Many stream classes; most are designed to be used

as wrappers that accept data and transform or filter
it before passing it along

• Java 1.0: Byte streams with a few wrappers to
handle ASCII text

• Java 1.1: Added text stream classes to handle
Unicode text properly

7

4/23/00 37

Stream Classes (1)
• InputStream/OutputStream - abstract

classes defining basic raw byte stream operations
• Reader/Writer - abstract classes defining

basic text stream operations
All Java stream classes are built on top of these

• InputStreamReader/OutputStreamWriter -
basic conversion between bytes and characters (in
both directions)

4/23/00 38

Stream Classes (2)
• BufferedInputStream/
BufferedOutputStream
BufferedReader/BufferedWriter -
versions of streams that add buffering and
additional input/output methods

• PrintWriter - Text stream with methods for
printing Strings and primitive types as text
output.

4/23/00 39

Stream Classes (3)
• DataInputStream/DataOutputStream -

Filter streams that can read/write simple types
including String and primitive numeric types as
binary byte streams.

• FileInputStream/FileOutputStream
FileReader/FileWriter - byte and text
streams that read and write from/to the local file
system.

4/23/00 40

Ex: Read a byte from Keyboard
• System.in is an InputStream. At the

lowest level, we can read bytes. As in C, the basic
read() operation returns an int, with -1
indicating end of stream.

try {
int nibble = System.in.read();

} catch (IOException e) { … }

4/23/00 41

Ex: Read Line from Keyboard
• To read lines of characters, convert System.in

to a character stream, and wrap it in a
BufferedReader to get readLine().

try {
InputStreamReader chars =
new InputStreamReader(System.in);
BufferedReader in =
new BufferedReader(chars);
String firstLine = in.readLine();
…

} catch (IOException e) { … }

4/23/00 42

File I/O
• The file stream classes have constructors that take

a filename as an argument and open the file.
Try {
FileReader theFile =

new FileReader(“input.dat”);
BufferedReader input =

new BufferedReader(theFile);
String line = input.readLine();
System.out.println(line);

} catch (IOException e) { … }
• Gotcha: File names depend on the underlying file system --

hard to be completely “platform independent”.

8

4/23/00 43

Design Goals
• Support secure, high-performance,
robust applications running as-is
on multiple platforms and over
networks

• “Architecture-neutral”, portable,
allow dynamic updates and adapt to
new environments

• Look enough like C++ for
programmer comfort

• Object-oriented programming
• Concurrency (multithreading)
• Simplicity

