CSE 412 - Intro to Data Visualization

Course Summary

Jane Hoffswell University of Washington
Administrivia
Final Project Deliverables

Demonstration Video (<= 2 min)
Link due on Canvas by midnight tonight Wed 3/10

Communicate topics and project goals
Do: Show what viewers can learn from your page
Don't: Enumerate every feature of the page

Video should include: project name, team members' names, link to your website

For other tips, see the video production guide!
Final Project Deliverables

Demonstration Video (<= 2 min)
Link due on Canvas by midnight tonight Wed 3/10

Final Project Showcase
We will show demo videos in class, Fri 3/12.

Interactive Web Page & GitHub Repo
All materials online by midnight Mon 3/15.

Read assignment description for more!
Course Evaluation

Official course evaluation, due by 3/14
Your opinion is valued!

https://uw.iasystem.org/survey/236202
Course Summary
Value of Visualization

Anscombe's Quartet [Anscombe 73]
Summary Statistics

<table>
<thead>
<tr>
<th>Set A</th>
<th>Set B</th>
<th>Set C</th>
<th>Set D</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Y</td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>10</td>
<td>8.04</td>
<td>10</td>
<td>9.14</td>
</tr>
<tr>
<td>8</td>
<td>6.95</td>
<td>8</td>
<td>8.14</td>
</tr>
<tr>
<td>13</td>
<td>7.58</td>
<td>13</td>
<td>8.74</td>
</tr>
<tr>
<td>9</td>
<td>8.81</td>
<td>9</td>
<td>8.77</td>
</tr>
<tr>
<td>11</td>
<td>8.33</td>
<td>11</td>
<td>9.26</td>
</tr>
<tr>
<td>14</td>
<td>9.96</td>
<td>14</td>
<td>8.1</td>
</tr>
<tr>
<td>6</td>
<td>7.24</td>
<td>6</td>
<td>6.13</td>
</tr>
<tr>
<td>4</td>
<td>4.26</td>
<td>4</td>
<td>3.1</td>
</tr>
<tr>
<td>12</td>
<td>10.84</td>
<td>12</td>
<td>9.11</td>
</tr>
<tr>
<td>7</td>
<td>4.82</td>
<td>7</td>
<td>7.26</td>
</tr>
<tr>
<td>5</td>
<td>5.68</td>
<td>5</td>
<td>4.74</td>
</tr>
</tbody>
</table>

Linear Regression

\[
Y = 3 + 0.5 \, X
\]

\[
R^2 = 0.67
\]

[Anscombs 73]
The Value of Visualization

Record information
 Blueprints, photographs, seismographs, ...

Analyze data to support reasoning
 Develop and assess hypotheses
 Find patterns / Discover errors in data
 Expand memory

Convey information
 Communicate, inform, inspire
 Collaborate and revise
Data and Image Models

Sémiologie Graphique [Bertin 67]

<table>
<thead>
<tr>
<th>XY</th>
<th>LIGNES</th>
<th>ZONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 DIMENSIONS DU PLAN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POINTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAILLE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VALEUR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GRAIN</th>
<th>COULEUR</th>
<th>ORIENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Les variables de l'image

Les variables de séparation des images
Nominal, Ordinal & Quantitative

N - Nominal (labels or categories) $\rightarrow =, \neq$

- Fruits: apples, oranges, …

O - Ordered $\rightarrow =, \neq, <, >$

- Quality of meat: Grade A, AA, AAA

Q - Interval (location of zero arbitrary) $\rightarrow =, \neq, <, >, -$

- Dates: Jan, 19, 2006; Location: (LAT 33.98, LONG -118.45)
- Only differences (i.e., intervals) may be compared
- Can measure distances or spans

Q - Ratio (zero fixed) $\rightarrow =, \neq, <, >, -, %$

- Physical measurement: Length, Mass, Time duration, …
- Counts and amounts
- Can measure ratios or proportions
Dimensions & Measures

Dimensions (~ independent variables)
Often discrete variables describing data (N, O)
Categories, dates, binned quantities

Measures (~ dependent variables)
Data values that can be aggregated (Q)
Numbers to be analyzed
Aggregate as sum, count, avg, std. dev…

Not a strict distinction. The same variable may be treated either way depending on the task.
Design Criteria [Mackinlay 86]

Expressiveness
A set of facts is expressible in a visual language if the sentences (i.e. the visualizations) in the language express all the facts in the set of data, and only the facts in the data.

Effectiveness
A visualization is more effective than another visualization if the information conveyed by one visualization is more readily perceived than the information in the other visualization.
Design Criteria *Translated*

Tell the truth and nothing but the truth
(don’t lie, and don’t lie by omission)

Use encodings that people decode better
(where better = faster and/or more accurate)
Mackinlay’s Ranking

Conjectured effectiveness of encodings by data type
Exploratory Data Analysis
Data Quality

“The first sign that a visualization is good is that it shows you a problem in your data...

...every successful visualization that I've been involved with has had this stage where you realize, "Oh my God, this data is not what I thought it would be!" So already, you've discovered something.”

Martin Wattenberg
Exploratory Data Analysis Lessons

Check **data quality** and your **assumptions**.

Start with **univariate summaries**, then start to consider **relationships among variables**.

Avoid premature fixation!

Transform data appropriately (e.g., invert, log)

Show data variation, not design variation [Tufte]
Visual Encoding and Design

Problematic design

Redesign

SlicerDicers' Sales Compared to Other Products

Sales of SlicerDicers Compared to Sales of Other Products
July - December, 2011
Artery Visualization [Borkin et al '11]

Rainbow Palette

2D

62%

39%

Diverging Palette

92%

71%

2D

3D
About the design process…

Visualization draws upon both science and art! Principles like expressiveness & effectiveness are not hard-and-fast rules, but can assist us to guide the process and articulate alternatives. They can lead us to think more deeply about our design rationale and prompt us to reflect. It helps to know “the rules” in order to wisely bend (or break) them at the right times!
Recent elections have placed a heavy emphasis on “swing states” — Ohio, Florida and the other competitive states. You can see many states shifted between the Democratic and Republican parties. A look at how the states have shifted over past elections.

Obama Re-elected
The country voted about 5 percentage points more Republican in 2012 than in 2008. Obama lost North Carolina and Indiana, but won every tossup except Florida, which remains too close to call.

As Goes Ohio
Ohio, which has voted for the winner in every election since 1964, provided the decisive electoral votes in 2004, and it is the state likeliest to play that role again this year, according to the FiveThirtyEight model.
Narrative Storytelling

narrative (n): An account of a series of events, facts, etc., given in order and with the establishing of connections between them.

Effective storytelling “require[s] skills like those familiar to movie directors, beyond a technical expert’s knowledge of computer engineering and science.”

- Gershon & Page ‘01
Interaction

Crimespotting.org

Friday, December 12, 2008
154 reports
Gulf of Execution
The difference between the user’s intentions and the allowable actions.

Gulf of Evaluation
The amount of effort that the person must exert to interpret the state of the system and to determine how well the expectations and intentions have been met.

[Norman 1986]
Taxonomy of Interactions

Data and View Specification
Visualize, Filter, Sort, Derive

View Manipulation
Select, Navigate, Coordinate, Organize

Process and Provenance
Record, Annotate, Share, Guide
Interaction Takeaways

Most visualizations are interactive
Even passive media elicit interactions

Good visualizations are task dependent
Pick the right interaction technique
Consider the semantics of the data domain

Fundamental interaction techniques
Selection / Annotation, Sorting, Navigation, Brushing & Linking, Dynamic Queries
Animated transitions in statistical data graphics [Heer & Robertson 07]
How many dots can we simultaneously track?

~4-6. Difficulty increases sig. at 6. [Yantis 92, Pylyshn 88, Cavanagh 05]
Animation Takeaways

Animation is a salient visual phenomenon
Attention, object constancy, causality, timing
Design with care: congruence & apprehension

For processes, static images may be preferable

For transitions, animation has demonstrated benefits, but consider task and timing
Ethical & Deceptive Visualization

Tufte's Lie Factor, original visualization from the NYT [Tufte 01]
Deceptive Visualization

Lie Factor: Distorting the apparent size of the effect in your data, often through choosing ambiguous or non-standard encodings.

Scale Manipulation: Changing with the scales of your chart to minimize, magnify, or invert the change in the data.

Metric Manipulation: Choosing how data are counted or normalized in order to hide or exaggerate effects in your data.
A3 Review: Ethical or Deceptive?

"You will be assigned at least one ethical and one deceptive visualization; the other two visualizations will be randomly assigned."
The psychophysics of sensory function [Stevens 61]
Graphical Perception

The ability of viewers to interpret visual (graphical) encodings of information and thereby decode information in graphs.
Pre-Attentive Features

[Information Visualization. Figure 5. 5 Ware 04]
Change Blindness
Change Blindness
Change Blindness
Change Blindness
Change Blindness

[Example from Palmer 99, originally due to Rock]
Just Noticeable Difference (JND)

JND (Weber’s Law)

Perceived Change $\Delta S = k \frac{\Delta I}{I}$

Scale Factor (Empirically Determined)

Ratios more important than magnitude

Most continuous variation in stimuli are perceived in discrete steps

Change of Intensity

Physical Intensity
Summary

Choosing effective visual encodings requires knowledge of visual perception.

Visual features/attributes
Individual attributes often pre-attentive
Multiple attributes may be separable or integral

Gestalt principles provide high-level guidelines

We don’t always see everything that is there!
CIE 1931 xy chromaticity diagram
showing the gamut of the sRGB and Adobe RGB color spaces
including the Planckian locus, with temperatures indicated.
Wavelengths of monochromatic light are shown in blue.
Palette Design & Color Names

Minimize overlap and ambiguity of colors.

<table>
<thead>
<tr>
<th>Color Name Distance</th>
<th>Salience</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>.47</td>
<td>blue 62.9%</td>
</tr>
<tr>
<td>1.00</td>
<td>.90</td>
<td>orange 93.9%</td>
</tr>
<tr>
<td>1.00</td>
<td>.67</td>
<td>green 79.8%</td>
</tr>
<tr>
<td>1.00</td>
<td>.66</td>
<td>red 80.4%</td>
</tr>
<tr>
<td>1.00</td>
<td>.47</td>
<td>purple 51.4%</td>
</tr>
<tr>
<td>1.00</td>
<td>.37</td>
<td>brown 54.0%</td>
</tr>
<tr>
<td>1.00</td>
<td>.58</td>
<td>pink 71.7%</td>
</tr>
<tr>
<td>1.00</td>
<td>.67</td>
<td>grey 79.4%</td>
</tr>
<tr>
<td>1.00</td>
<td>.18</td>
<td>yellow 31.2%</td>
</tr>
<tr>
<td>1.00</td>
<td>.25</td>
<td>blue 25.4%</td>
</tr>
</tbody>
</table>

Tableau-10

Average 0.97 0.52

http://vis.stanford.edu/color-names
Be Wary of Naïve Rainbows!

1. Hues are not naturally ordered
2. People segment colors into classes, perceptual banding
3. Naive rainbows are unfriendly to color blind viewers
4. Some colors are less effective at high spatial frequencies
Quantitative Color Encoding

Sequential color scale
Ramp in luminance, possibly also hue
Higher value -> darker color (or vice versa)

Diverging color scale
Useful when data has meaningful “midpoint”
Use neutral color (e.g., grey) for midpoint
Use saturated colors for endpoints

Limit number of steps in color to 3-9
Avoid simultaneous contrast, hold mappings in memory
Simultaneous Contrast

Inner & outer rings are the same physical purple.

Donald MacLeod
Hints for the Colorist

Use **only a few** colors (~6 ideal)

Colors should be **distinctive** and **named**

Strive for color **harmony** (natural colors?)

Use **cultural conventions**; appreciate symbolism

Get it right in **black and white**

Respect the **color blind**

Take advantage of **perceptual color spaces**

Color is cultural and a matter of taste!
Visualization Software

D3: Data-Driven Documents
Chart Typologies
Excel, Many Eyes, Google Charts

Visual Analysis Grammars
VizQL, ggplot2, Vega-Lite

Visualization Grammars
Protovis, D3.js, Vega

Component Architectures
Prefuse, Flare, Improvise, VTK

Graphics APIs
Processing, OpenGL, Java2D

Charting Tools

Declarative Languages

Programming Toolkits
Interactive Data Exploration
Tableau, Lyra, Polestar, Voyager

Visual Analysis Grammars
VizQL, ggplot2, Vega-Lite

Visualization Grammars
Protovis, D3.js, Vega

Component Architectures
Prefuse, Flare, Improvise, VTK

Graphics APIs
Processing, OpenGL, Java2D
Maps

Dymaxion Maps [Fuller 46]
Exploring Projections...

https://observablehq.com/@vega/vega-lite-cartographic-projections
Tissot’s Indicatrix

Circle size indicates the amount of area distortion
Symbol Map

237
Joseph R. Biden Jr.
70,122,064 votes (50.2%)

87 remaining

214
Donald J. Trump
67,075,309 votes (48.0%)

SHIFT IN MARGIN
In counties that have reported almost all of their votes

By winner Electoral votes Size of lead Shift from 2016

More Democratic More Republican

[NY Times]
237
Joseph R. Biden Jr.
70,122,063 votes (50.2%)

87 remaining

270 TO WIN

214
Donald J. Trump
67,075,300 votes (48.0%)

Cartogram
[NYTimes]
Hierarchies and Networks

Degree-Of-Interest Trees [Heer & Card 04]
Trees and Graphs

Trees
Graphs with hierarchical structure
Connected graph with N-1 edges
Nodes as *parents* and *children*

Graphs
Model relations among data
Nodes and edges
Network Analysis Tasks [Pretorius '13]

Structure-based: relationships and connectivity
- Find all of the friends of friends for Taylor.
- Find all of the people who are friends with Jordan and Alex.
- Six degrees of separation: shortest path between two individuals.

Attribute-based: specific node/link attributes
- Find all "students" attending CSE412.
- Find all the "friends" and "family" of Alex.

Browsing: understand paths in the data
- Find Alex's friend Taylor, and then Taylor's friend Jordan.

Estimation: summarization and temporal changes
- How does Jordan's friend group change over the course of the year?
Hierarchies and Networks

Mon 2/22 - Tree Visualization

Wed 2/24 - Graph Layout: Node-Link Diagrams

Wed 2/24 - Alternative Visualizations & Techniques
Justice Kennedy has been an essential figure in forming a majority on the court. He voted on the winning side of close decisions 76 percent of the time over his career, far more often than any other justice he served with except for Justice Neil Gorsuch, who joined the court last year.

Justice Kennedy joined both the conservative and liberal blocs of justices to...
Responsive Visualization Summary

Good visualizations are task dependent
Who is the audience and what is the task?
Pick the right interaction technique

Visualizations are not one size fits all
Context might change user goals
Visualizations: Word tree / Alberto Gonzales

Creator: Martin Wattenberg
Tags:

Search: i don't

118 hits

1. recall
2. i don't
3. know
4. believe
5. think
6. have

Data source: CQ Transcript Wire via the Washington Post

Comments (4)
Text Processing Pipeline

Tokenization
Segment text into terms.
Remove stop words? *a, an, the, of, to be*
Numbers and symbols? *#huskies, @UW, OMG!!!!!!*

Stemming
Group together different forms of a word.
Porter stemmer? *visualization(s), visualize(s), visually → visual*
Lemmatization? *goes, went, gone → go*

Ordered list of terms
Text Visualization Takeaways

High Dimensionality
Where possible use text to represent text…
… which terms are the most descriptive?

Context & Semantics
Provide relevant context to aid understanding.
Show (or provide access to) the source text.

Modeling Abstraction
Understand abstraction of your language models.
Match analysis task with appropriate tools and models.
Currently: from bag-of-words to vector space embeddings
Uncertainty
What does uncertainty mean?

Measurement Uncertainty:
"We're not exactly sure what the values in the data are."

Forecast Uncertainty:
"We're not exactly sure what will happen to the data next."

Model Uncertainty:
"We're not exactly sure how the data fits together."

Decision Uncertainty:
"We're not exactly sure what to do with the data."
Uncertainty Visualization Summary

Uncertainty can happen at all stages of the analysis process, from data collection to final decision-making.

Variables like blur and transparency can be intuitive for showing uncertainty, but hard to decode.

Consider using discrete samples to show variation and uncertainty in a model.

Consider when uncertainty is high enough that doing nothing is the right thing to do.
Scalability

1.7 B stars. 1.2 TB of data. Visualizations running in-browser.
Interactive Scalability Strategies

1. Query Database
2. Client-Side Indexing / Data Cubes
3. Prefetching
4. Approximation

These strategies are not mutually exclusive! Systems can apply them in tandem.
Evaluation

Microsoft File Explorer vs. Xerox PARC Hyperbolic Tree
Visualization Evaluation Summary

Design and analyze visualization techniques in context of real-world use. Time/error analyses can be insightful, but they don’t provide a complete picture. Performance measures may be more suited to serious analysis than casual use?
Zoom Poll:
Top 3 Course Topics
The Future of Visualization

Where is more work required?
What emerging technologies and societal trends will impact visualization design?
What did you find most difficult in creating visualizations and designing techniques?
Thank You!
(Final Project Showcase in lecture on Friday!)