Visualization Tools
How do people create visualizations?

Chart Typology
Pick from a stock of templates
Easy-to-use but limited expressiveness
Prohibits novel designs, new data types

Component Architecture
Permits more combinatorial possibilities
Novel views require new operators, which requires software engineering
Graphics APIs
Processing, OpenGL, Java2D
ey = y;
size = s;
}

void update(int mx, int my) {
 angle = atan2(my-ey, mx-ex);
}

void display() {
 pushMatrix();
 translate(ex, ey);
 fill(255);
 ellipse(0, 0, size, size);
 rotate(angle);
 fill(153);
 ellipse(size/4, 0, size/2, size/2);
 popMatrix();
}
Graphics APIs
Processing, OpenGL, Java2D
Component Architectures
Prefuse, Flare, Improvise, VTK

Graphics APIs
Processing, OpenGL, Java2D
Data State Model
[Chi 98]
Prefuse & Flare

Operator-based toolkits for visualization design
Vis = (Input Data -> Visual Objects) + Operators

Prefuse (http://prefuse.org) Flare (http://flare.prefuse.org)
Component Architectures
Prefuse, Flare, Improvise, VTK

Graphics APIs
Processing, OpenGL, Java2D
Chart Typologies
Excel, Many Eyes, Google Charts

Component Architectures
Prefuse, Flare, Improvise, VTK

Graphics APIs
Processing, OpenGL, Java2D
Chart Typologies
Data Sets: State Quick Facts

Uploaded By: zinggoat
Data Source: US Census Bureau
Created at: Friday May 18, 3:08 PM
Description:
Tags: people census

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Alabama</td>
<td>4557808</td>
<td>0.03</td>
<td>4447100</td>
<td>0.1</td>
<td>0.07</td>
<td>0.24</td>
<td>0.13</td>
</tr>
<tr>
<td>2 Alaska</td>
<td>663661</td>
<td>0.06</td>
<td>626932</td>
<td>0.14</td>
<td>0.08</td>
<td>0.29</td>
<td>0.06</td>
</tr>
<tr>
<td>3 Arizona</td>
<td>5939292</td>
<td>0.16</td>
<td>5130632</td>
<td>0.4</td>
<td>0.08</td>
<td>0.27</td>
<td>0.13</td>
</tr>
<tr>
<td>4 Arkansas</td>
<td>2779154</td>
<td>0.04</td>
<td>2673400</td>
<td>0.14</td>
<td>0.07</td>
<td>0.25</td>
<td>0.14</td>
</tr>
<tr>
<td>5 California</td>
<td>36132147</td>
<td>0.07</td>
<td>33871648</td>
<td>0.14</td>
<td>0.07</td>
<td>0.27</td>
<td>0.11</td>
</tr>
<tr>
<td>6 Colorado</td>
<td>4665177</td>
<td>0.08</td>
<td>4301261</td>
<td>0.31</td>
<td>0.07</td>
<td>0.26</td>
<td>0.1</td>
</tr>
<tr>
<td>7 Connecticut</td>
<td>3510297</td>
<td>0.03</td>
<td>3405565</td>
<td>0.04</td>
<td>0.06</td>
<td>0.24</td>
<td>0.14</td>
</tr>
<tr>
<td>8 Delaware</td>
<td>843524</td>
<td>0.08</td>
<td>783600</td>
<td>0.18</td>
<td>0.07</td>
<td>0.23</td>
<td>0.13</td>
</tr>
<tr>
<td>9 Florida</td>
<td>17789864</td>
<td>0.11</td>
<td>15982378</td>
<td>0.24</td>
<td>0.06</td>
<td>0.23</td>
<td>0.17</td>
</tr>
<tr>
<td>10 Georgia</td>
<td>9072576</td>
<td>0.11</td>
<td>8186453</td>
<td>0.26</td>
<td>0.08</td>
<td>0.26</td>
<td>0.1</td>
</tr>
<tr>
<td>11 Hawaii</td>
<td>1275194</td>
<td>0.05</td>
<td>1211537</td>
<td>0.09</td>
<td>0.07</td>
<td>0.24</td>
<td>0.14</td>
</tr>
<tr>
<td>12 Idaho</td>
<td>1429096</td>
<td>0.1</td>
<td>1293953</td>
<td>0.29</td>
<td>0.07</td>
<td>0.27</td>
<td>0.11</td>
</tr>
<tr>
<td>13 Illinois</td>
<td>12763371</td>
<td>0.03</td>
<td>12419293</td>
<td>0.09</td>
<td>0.07</td>
<td>0.26</td>
<td>0.12</td>
</tr>
</tbody>
</table>
Choosing a visualization type for State Quick Facts

Analyze a text

Tag Cloud
How are you using your words? This enhanced tag cloud will show you the words popularity in the given set of text.
Learn more

Wordle
Wordle is a toy for generating ‘word clouds’ from text that you provide. The clouds give greater prominence to words that appear more frequently in the source text.
Learn more

Word Tree
See a branching view of how a word or phrase is used in a text. Navigate the text by zooming and clicking.
Learn more

Compare a set of values

Bar Chart
How do the items in your data set stack up? A bar chart is a simple and recognizable way to compare values. You can display several sets of bars for multivariate comparisons.
Learn more

Block Histogram
This versatile chart lets you get a quick sense of how a single set of data is distributed. Each item in the data is an individually identifiable block.
Learn more
Visualizations: Federal Spending by State, 2004

Creator: Anonymous
Tags: census people

Federal spending 2004 ($1000)
Disks colored by People QuickFacts

Bubble Size
Federal spending 2004 ($1000)
Label People QuickFacts
Color People QuickFacts

Census Bureau
This data set has not yet been rated
Every Wednesday, when I get home from school, I have a piano lesson. My teacher is a very strict house. Her name is Hillary Clinton. Our piano is a Steinway Concert tree and it has 88 cups. It also has a soft pedal and a/an Smiley pedal. When I have a lesson, I sit down on the piano Alberto and play for 16 minutes. I do scales to exercise my cats, and then I usually play a minuet by Johann Sebastian Washington. Teacher says I am a natural Haunted House and have a good musical leg. Perhaps when I get better I will become a concert vet and give a recital at Carnegie hospital.
Most charting packages channel user requests into a **rigid array of chart types**. To atone for this lack of flexibility, they offer a kit of post-creation editing tools to return the image to what the user originally envisioned. **They give the user an impression of having explored data rather than the experience.**

Leland Wilkinson

Chart Typologies
Excel, Many Eyes, Google Charts

Component Architectures
Prefuse, Flare, Improvise, VTK

Graphics APIs
Processing, OpenGL, Java2D
Chart Typologies
Excel, Many Eyes, Google Charts

Visual Analysis Grammars
VizQL, ggplot2

Component Architectures
Prefuse, Flare, Improvise, VTK

Graphics APIs
Processing, OpenGL, Java2D
ggplot(diamonds, aes(x=price, fill=cut)) + geom_bar(position="dodge")
```r
ggplot(diamonds, aes(x=price, fill=cut)) + geom_bar(position="dodge")
```
ggplot(diamonds, aes(x=price, fill=cut)) + geom_bar(position="dodge")
qplot(long, lat, data = expo, geom = "tile", fill = ozone,
 facets = year ~ month) +
 scale_fill_gradient(low = "white", high = "black") + map
Chart Typologies
Excel, Many Eyes, Google Charts

Visual Analysis Grammars
VizQL, ggplot2

Component Architectures
Prefuse, Flare, Improvise, VTK

Graphics APIs
Processing, OpenGL, Java2D
Chart Typologies
Excel, Many Eyes, Google Charts

Visual Analysis Grammars
VizQL, ggplot2

Component Architectures
Prefuse, Flare, Improvise, VTK

Graphics APIs
Processing, OpenGL, Java2D
Chart Typologies
Excel, Many Eyes, Google Charts

Visual Analysis Grammars
VizQL, ggplot2

Component Architectures
Prefuse, Flare, Improvise, VTK

Graphics APIs
Processing, OpenGL, Java2D

Ease-of-Use
Expressiveness
Chart Typologies
Excel, Many Eyes, Google Charts

Visual Analysis Grammars
VizQL, ggplot2

Component Architectures
Prefuse, Flare, Improvise, VTK

Graphics APIs
Processing, OpenGL, Java2D
Chart Typologies
Excel, Many Eyes, Google Charts

Visual Analysis Grammars
VizQL, ggplot2

Visualization Grammars
Protovis, D3.js

Component Architectures
Prefuse, Flare, Improvise, VTK

Graphics APIs
Processing, OpenGL, Java2D

Ease-of-Use

Expressiveness
Protovis & D3
Today's first task is not to invent wholly new [graphical] techniques, though these are needed. Rather we need most vitally to recognize and reorganize the essential of old techniques, to make easy their assembly in new ways, and to modify their external appearances to fit the new opportunities.

J. W. Tukey, M. B. Wilk
Data Analysis & Statistics, 1965
Protovis: A Grammar for Visualization

A graphic is a composition of data-representative marks.

with Mike Bostock & Vadim Ogievetsky
MARKS: Protovis graphical primitives
<table>
<thead>
<tr>
<th>MARK</th>
<th>$\lambda : D \rightarrow R$</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>λ</td>
</tr>
<tr>
<td>visible</td>
<td>λ</td>
</tr>
<tr>
<td>left</td>
<td>λ</td>
</tr>
<tr>
<td>bottom</td>
<td>λ</td>
</tr>
<tr>
<td>width</td>
<td>λ</td>
</tr>
<tr>
<td>height</td>
<td>λ</td>
</tr>
<tr>
<td>fillStyle</td>
<td>λ</td>
</tr>
<tr>
<td>strokeStyle</td>
<td>λ</td>
</tr>
<tr>
<td>lineWidth</td>
<td>λ</td>
</tr>
<tr>
<td>...</td>
<td>λ</td>
</tr>
</tbody>
</table>

$D \rightarrow R$
RECT

<table>
<thead>
<tr>
<th>data</th>
<th>1</th>
<th>1.2</th>
<th>1.7</th>
<th>1.5</th>
<th>0.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>visible</td>
<td>true</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>left</td>
<td>λ: index * 25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bottom</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>width</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>height</td>
<td>λ: datum * 80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fillStyle</td>
<td>blue</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>strokeStyle</td>
<td>black</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lineWidth</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RECT</td>
<td>(\lambda : D \rightarrow R)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>data</td>
<td>1</td>
<td>1.2</td>
<td>1.7</td>
<td>1.5</td>
<td>0.7</td>
</tr>
<tr>
<td>visible</td>
<td>true</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>left</td>
<td>0 * 25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bottom</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>width</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>height</td>
<td>1 * 80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fillStyle</td>
<td>blue</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>strokeStyle</td>
<td>black</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lineWidth</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RECT

<table>
<thead>
<tr>
<th>data</th>
<th>1</th>
<th>1.2</th>
<th>1.7</th>
<th>1.5</th>
<th>0.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>visible</td>
<td>true</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>left</td>
<td>1 * 25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bottom</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>width</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>height</td>
<td>1.2 * 80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fillStyle</td>
<td>blue</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>strokeStyle</td>
<td>black</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lineWidth</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RECT</td>
<td>(\lambda : D \rightarrow R)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>data</td>
<td>1</td>
<td>1.2</td>
<td>1.7</td>
<td>1.5</td>
<td>0.7</td>
</tr>
<tr>
<td>visible</td>
<td>true</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>left</td>
<td>2 * 25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bottom</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>width</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>height</td>
<td>1.7 * 80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fillStyle</td>
<td>blue</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>strokeStyle</td>
<td>black</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lineWidth</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RECT

<table>
<thead>
<tr>
<th></th>
<th>(\lambda : D \rightarrow R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>1 1.2 1.7 1.5 0.7</td>
</tr>
<tr>
<td>visible</td>
<td>true</td>
</tr>
<tr>
<td>left</td>
<td>3 * 25</td>
</tr>
<tr>
<td>bottom</td>
<td>0</td>
</tr>
<tr>
<td>width</td>
<td>20</td>
</tr>
<tr>
<td>height</td>
<td>1.5 * 80</td>
</tr>
<tr>
<td>fillStyle</td>
<td>blue</td>
</tr>
<tr>
<td>strokeStyle</td>
<td>black</td>
</tr>
<tr>
<td>lineWidth</td>
<td>1.5</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Note: The table above represents data and settings for a rectangular object. The `\(\lambda : D \rightarrow R \)` notation suggests a mapping or transformation function. The table lists properties such as data, visible status, coordinates, and styling attributes. The diagram illustrates a bar graph with bars of varying heights, possibly representing the data or values corresponding to the properties listed in the table.
<table>
<thead>
<tr>
<th>RECT</th>
<th>(\lambda : D \rightarrow R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>1 1.2 1.7 1.5 0.7</td>
</tr>
<tr>
<td>visible</td>
<td>true</td>
</tr>
<tr>
<td>left</td>
<td>4 * 25</td>
</tr>
<tr>
<td>bottom</td>
<td>0</td>
</tr>
<tr>
<td>width</td>
<td>20</td>
</tr>
<tr>
<td>height</td>
<td>0.7 * 80</td>
</tr>
<tr>
<td>fillStyle</td>
<td>blue</td>
</tr>
<tr>
<td>strokeStyle</td>
<td>black</td>
</tr>
<tr>
<td>lineWidth</td>
<td>1.5</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
RECT

<table>
<thead>
<tr>
<th>data</th>
<th>1</th>
<th>1.2</th>
<th>1.7</th>
<th>1.5</th>
<th>0.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>visible</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>true</td>
</tr>
<tr>
<td>left</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(\lambda: \text{index} \times 25)</td>
</tr>
<tr>
<td>bottom</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>width</td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>height</td>
<td></td>
<td></td>
<td></td>
<td>(\lambda: \text{datum} \times 80)</td>
<td></td>
</tr>
<tr>
<td>fillStyle</td>
<td></td>
<td></td>
<td></td>
<td>blue</td>
<td></td>
</tr>
<tr>
<td>strokeStyle</td>
<td></td>
<td></td>
<td></td>
<td>black</td>
<td></td>
</tr>
<tr>
<td>lineWidth</td>
<td></td>
<td></td>
<td></td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(\lambda : D \rightarrow R\)
var vis = new pv.Panel();
vis.add(pv.Bar)
 .data([1, 1.2, 1.7, 1.5, 0.7])
 .visible(true)
 .left((d) => this.index * 25);
 .bottom(0)
 .width(20)
 .height((d) => d * 80)
 .fillStyle("blue")
 .strokeStyle("black")
 .lineWidth(1.5);
vis.render();
var army = pv.nest(napoleon.army, "dir", "group");
var vis = new pv.Panel();

var lines = vis.add(pv.Panel).data(army);
lines.add(pv.Line)
 .data(() => army[this.idx])
 .left(lon).top(lat).size((d) => d.size/8000)
 .strokeStyle((d) => color[army[paneIndex][0].dir]);

vis.add(pv.Line).data(napoleon.temp)
 .top((d) => 5 + tmp(d))
 .left(lon).top(lat)
 .text((d) => d.city).font("italic 10px Georgia")
 .textAlign("center").textBaseline("middle");

vis.add(pv.Rule).data([0,-10,-20,-30])
 .top((d) => 300 - 2*d - 0.5).left(200).right(150)
 .lineWidth(1).strokeStyle("#ccc")
 .anchor("right").add(pv.Label)
 .font("italic 10px Georgia")
 .text((d) => d.temp+"°").textBaseline("center");
Bach’s Prelude #1 in C Major | Jieun Oh
Obesity Map | Vadim Ogievetsky
FlickrSeason | Ken-Ichi Ueda
d3.js Data-Driven Documents

with Mike Bostock, Jason Davies & Vadim Ogievetsky
Protovis

Specialized mark types

+ Streamlined design
- Limits expressiveness
- More overhead (slower)
- Harder to debug
- Self-contained model

Specify a scene (nouns)

+ Quick for static vis
- Delayed evaluation
- Animation, interaction are more cumbersome
Protovis

Specialized mark types
+ Streamlined design
- Limits expressiveness
- More overhead (slower)
- Harder to debug
- Self-contained model

Specify a scene (nouns)
+ Quick for static vis
- Delayed evaluation
- Animation, interaction are more cumbersome

D3

Bind data to DOM
- Exposes SVG/CSS/…
+ Exposes SVG/CSS/…
+ Less overhead (faster)
+ Debug in browser
+ Use with other tools

Transform a scene (verbs)
- More complex model
+ Immediate evaluation
+ Dynamic data, anim, and interaction natural
Chart Typologies
Excel, Many Eyes, Google Charts

Visual Analysis Grammars
VizQL, ggplot2

Visualization Grammars
Protovis, D3.js

Component Architectures
Prefuse, Flare, Improvise, VTK

Graphics APIs
Processing, OpenGL, Java2D
Administrivia
Reminders!

Assignment 3 Due **tonight, Mon 5/3, 11:59pm PT**
https://courses.cs.washington.edu/courses/cse412/21sp/a3.html

Final Project Proposal Due **Fri 5/7, 11:59pm PT**
https://courses.cs.washington.edu/courses/cse412/21sp/fp.html

Four Peer Evaluations Due **Mon 5/10, 11:59pm PT**
https://courses.cs.washington.edu/courses/cse412/21sp/a3b.html
Final Project Teams

Work in groups of 3-5 people

Post your project ideas and interests on Ed, or respond to classmates about their projects

Mark thread as resolved when you are no longer looking for additional members

https://edstem.org/us/courses/4910/discussion/354324
Final Project Proposal

Form: https://forms.gle/D3WpCvdQkMa3kt6z6

Project Name - short name for GitHub
e.g., food-deserts or solar-panel-manufacturing

Abstract - describing goals and motivation

Team members - UW email, GitHub username

Due by **11:59 pm PT, next Friday May 7th**
A3 Assignment Peer Critiques

Review **four** A3 submissions (assigned on Canvas)

Submit **four** critique forms by **Mon 5/10, 11:59pm**

Assignments will be posted **tomorrow afternoon** after the A3 deadline (announced on Ed).

Please submit A3 on time! Assignments submitted late will not receive any peer evaluations. Image filenames must be exactly "ethical" and "deceptive"
A3 Assignment Peer Critiques

Review **four** A3 submissions (assigned on Canvas)

Submit **four** critique forms by **Mon 5/10, 11:59pm**

Follow **I like / I wish / What if?** format for critiques
Be positive! Be constructive! Share crazy ideas!

Results discussed in class on **Fri 5/14**

https://courses.cs.washington.edu/courses/cse412/21sp/a3b.html
Critique Questions

What is the purpose of the visualization?
Does it serve its purpose well?
Does it convey the data honestly?
Does it show the appropriate level of detail?
Are expressive & effective visual encodings used?
Is the design well-organized? Is it innovative?
What would you like to change or refine?
How might things be done differently?
I Like… / I Wish… / What If?

I LIKE…
Praise for design ideas and/or well-executed implementation details. Example: "I like the navigation through time via the slider; the patterns observed as one moves forward are compelling!"

I WISH…
Constructive statements on how the design might be improved or further refined. Example: "I wish moving the slider caused the visualization to update immediately, rather than the current lag."

WHAT IF?
Suggest alternative design directions, or even wacky half-baked ideas. Example: "What if we got rid of the slider and enabled direct manipulation navigation by dragging data points directly?"
I LIKE...
The goal of supporting developers to improve decoupling.
The “cut-line” interaction to isolate links of interest.
The use of gradients to show edge directionality.

I WISH...
I could author multiple cut-lines for compound queries.
More details on demand were shown upon mouse-hover.

WHAT IF?
You could incorporate information from applications that use this code? How often are different modules used?
Critique Categories

Visualization Design (Visual Encodings)
Choice of visual encodings (expressive, effective?)
Is the appropriate information visible by default?

Overall Design Quality
Organization, legibility, fitness for chosen goals

Task Effectiveness
Is the viewer readily able to answer the question?
Is the *ethical* design clear and transparent?
Is the *deceptive* design subtly misleading?
Required Reading for Wed 5/5

Chapters 9, 10 in Interactive Data Visualization for the Web, 2nd Edition. Scott Murray.
Optional Readings for Week 6

MON Critical Reflections on Visualization Authoring Systems.

WED D3: Data-Driven Documents. IEEE InfoVis. 2011.

A Visualization Tool Stack
Chart Typologies
Excel, Many Eyes, Google Charts

Visual Analysis Grammars
VizQL, ggplot2

Visualization Grammars
Protovis, D3.js

Component Architectures
Prefuse, Flare, Improvise, VTK

Graphics APIs
Processing, OpenGL, Java2D
Chart Typologies
Excel, Many Eyes, Google Charts

Visual Analysis Grammars
VizQL, ggplot2

Visualization Grammars
Protovis, D3.js

Component Architectures
Prefuse, Flare, Improvise, VTK

Graphics APIs
Processing, OpenGL, Java2D
Chart Typologies
Excel, Many Eyes, Google Charts

Visual Analysis Grammars
VizQL, ggplot2

Visualization Grammars
Protovis, D3.js

Component Architectures
Prefuse, Flare, Improvise, VTK

Graphics APIs
Processing, OpenGL, Java2D
What is a Declarative Language?

Programming by describing what, not how

Separate specification *(what you want)* from execution *(how it should be computed)*

In contrast to imperative programming, where you must give explicit steps.
What is a Declarative Language?

Programming by describing what, not how

Separate specification (what you want) from execution (how it should be computed)

In contrast to imperative programming, where you must give explicit steps.

d3.selectAll("rect")
 .data(my_data)
 .join("rect")
 .attr("x", d => xscale(d.foo))
 .attr("y", d => yscale(d.bar))
SELECT customer_id, customer_name, COUNT(order_id) as total FROM customers INNER JOIN orders ON customers.customer_id = orders.customer_id GROUP BY customer_id, customer_name HAVING COUNT(order_id) > 5 ORDER BY COUNT(order_id) DESC
Why Declarative Languages?

Faster iteration. Less code. Larger user base.

Better visualization. *Smart defaults.*

Reuse. *Write-once, then re-apply.*

Performance. *Optimization, scalability.*

Portability. *Multiple devices, renderers, inputs.*

Programmatic generation. *Write programs which output visualizations.*

Automated search & recommendation.
Chart Typologies
Excel, Many Eyes, Google Charts

Visual Analysis Grammars
VizQL, ggplot2

Visualization Grammars
Protovis, D3.js

Component Architectures
Prefuse, Flare, Improvise, VTK

Graphics APIs
Processing, OpenGL, Java2D
Chart Typologies
- Excel, Many Eyes, Google Charts

Visual Analysis Grammars
- VizQL, ggplot2, **Vega-Lite**

Visualization Grammars
- Protovis, D3.js, **Vega**

Component Architectures
- Prefuse, Flare, Improvise, VTK

Graphics APIs
- Processing, OpenGL, Java2D
Chart Typologies
Excel, Many Eyes, Google Charts

Visual Analysis Grammars
VizQL, ggplot2, **Vega-Lite**

Visualization Grammars
Protovis, D3.js, **Vega**

Component Architectures
Prefuse, Flare, Improvise, VTK

Graphics APIs
Processing, OpenGL, Java2D
Visual Analysis Grammars
VizQL, ggplot2, **Vega-Lite**

Visualization Grammars
Protovis, D3.js, **Vega**

Component Architectures
Prefuse, Flare, Improvise, VTK

Graphics APIs
Processing, OpenGL, Java2D
Lyra: An Interactive Visualization Design Environment

Satyanarayan et al. EuroVis’14, OpenVis ’14

Link to Demo!
Lyra: An Interactive Visualization Design Environment
Lyra 2: Designing Interactive Visualizations by Demonstration Zong et al. InfoVis’21

Link to Demo!
Voyager. Wongsuphasawat et al. InfoVis’15, CHI’17

Link to Demo!