Computer Systems

CSE 410 Winter 2022
18 —Course Summary



The Final Exam

* Some “why” questions

* Example: Why do systems implement virtual memory? What problem(s)
does it solve?

* Some “what” questions
* Example: What mechanism do operating systems use to protect memory?

* Some “demonstrate” questions

* Example: Express the meaning of this C language for loop in RISC-V
assembler instructions. (Assume nothing useful is in registers when your
code starts.)



Part 1: Some Themes

* “Simpler is faster”
e Static vs. Dynamic Evaluation
* Representation and Translation

* Interfaces vs. Implementation
* Layers, not options
* Policy vs. mechanism
* Interposition to evolve functionality

* Naming / Virtualization

e Parallelism / Concurrency
RV

* Trading space for time



Simpler is Faster

* RISC-V ISA
* load-store architecture (all operations are on values in registers)
* instructions are all 32 bits long (vs. variable length instructions)

* simple operations (load, store, add, and, shift, branch, jal, etc.)
* no hardware notion of stack
* no hardware notion of procedure call (beyond jal instruction)
* no hardware notion of type

* Languages
* Cvs. Java (functionality/performance)



Simpler is Faster: Layering

* OS over hardware
 abstracts memory to address space
 abstracts processor to thread
 abstracts disk to file system
* (abstracts network to sockets/connections)

* Virtual Memory

» Hardware provides mechanism (address translation and page faults), OS provides
policy (management of physical memory, setting access rights in virtual memory)

* Language over ISA / OS abstractions

» programmer works to language specification, not ISA/OS specification
* more efficient for programmer
* portable across ISAs

* |SA over Hardware
* hardware is boolean circuits, ISA is an interface specification



Layering

* Caches / Memory Hierarchy
* Main memory cache
* Small/fast
* Transparent

* Registers
* a “programmer controlled cache”

* pushes issue of deciding which values are most important right now to the
compiler (see Static vs. Dynamic)



Static vs. Dynamic

* We often prefer to do things statically — at compile/build time —
because then we don’t pay the cost of doing it at each execution
* Example: type checking

» Additionally, we can “view the entire program” statically, whereas we
see only the current instruction at run time

* Compiler can perform optimizations statically that you couldn’t perform
dynamically

* E.g., dead code removal (computing a value that will never be used)

* Some things can be done only dynamically

* E.g., optimizing instruction sequences across branches (e.g., inserting
bubbles in pipeline when needed, but only when needed)

 All computations/optimizations involving input



Representation and Translation

* Everything is bits
* Why base 2? Why not base 3, say?

* Integers
* signed and unsigned (why?)
 overflow

* Floats

* Characters
* Strings

* Objects

* Instructions
* Want compact encoding of instructions. Why?
* Must be able to encode every possible instruction



Representation and Translation: Instructions

* Instruction formats
* Why have an immediate format instruction?

* base-displacement memory addressing
e Why?

* PC relative branch format
* Why?

* Assembly language
* “human readable” assembly language

* Role of the assembler
* What does it do, what doesn’t it do (compared with a compiler, say)?



Interfaces vs. Implementations

* |SA as an interface
* One-at-a-time instruction execution model

* Pipelining as an implementation
* Many instructions in execution at once (Instruction Level Parallelism)
* Pipelining is made more effective by careful design of the ISA (RISC-V)

* Pipeline hazards
e Load hazards
e Control hazards



Layers, Not Options

* Programs on top of compilers on top of OS on top of hardware

» User level threads on top of kernel threads



Policy vs. Mechanism

* Example Mechanism: trap handler mechanism
Example Policy: Whatever OS decides to do in response

* (Same Example) Mechanism: signals
(Same Example) Policy: whatever app decides to do in response

* The most general way to defer policy to a layer above is to allow that
layer to execute code when an event that requires a policy decision
occurs



Interposition / Naming

* Interposition is finding an existing interface and inserting new
functionality that conforms to the existing interface

* Example: Main memory caches
* Example: Virtual memory

* Example: copy-on-write fork()



Parallelism / Concurrency

* Instruction level parallelism
* Pipelines

* Processes
* More than one application running concurrently

* Threads
* A single application using more than on core concurrently

* A single application dividing it’s control flow into simple, relatively
independent paths



Trading Space for Time

* Caches
* more space, less time

* Virtual memory

* Less space, more time
* Pipelines

* More space, less time



Part 2: Skills (Things You Can Do)

* Compile C-like code to RISC-V assembler
* Decompile RISC-V assembler to C-like code

e Encode/decode RISC-V assembler/machine instructions

* Manually simulate the result of executing a RISC-V assembler
instruction sequence

* Follow subroutine calling conventions in RISC-V assembler to call a
function and to return a value from function to the caller

* including caller/callee saved registers

* Manually optimize a sequence of assembler instructions by re-writing
them to an equivalent sequence that runs in fewer cycles



More Things You Can Do: Boolean Circuits

e Can define truth tables for a Boolean function
e Can convert a truth table into a Boolean circuit

e Can convert a Boolean circuit into a truth table

* Understand how Boolean circuits can do binary addition
* half-adders and full-adders



More Things You Can Do: Machine
Organization

* Determine how many cycles it will take to issue a sequence of RISC-V

instructions into the standard five stage pipeline
* Including dealing with control and load hazards when the pipeline
implements forwarding

* Determine the RAW, WAW, and WAR dependences that limit possible
parallel execution of a sequence of instructions



More TYCD: Caches

 Understand when caches will be effective
* Temporal and spatial locality

* Informally evaluate code in terms of how much spatial and/or
temporal locality it has

* Apply some simple re-writes to code to improve it’s spatial and/or

temporal locality
* We used block matrix multiply as an example in class

 Given a cache design (block/cache line size, number of lines, and set
associativity) and a memory address, determine where in the cache
to look for a possibly cached copy of the value stored at that address



More TYCD: OS / Security

e Understand the mechanism the OS uses to protect the CPU
* Understand the mechanism the OS uses to protect I/O devices
e Understand the mechanism the OS uses to protect memory

* Be able to explain how the OS on klaatu keeps you from running a
program that reads private files owned by other users



More TYCD: OS / Processes

e Understand fork/exec

* What they do
* Why giving a chance for the parent’s code to run in the context of the child’s
process is a good idea

* How is “inheritance” used (and useful) in fork()?

» Understand/write code for a simple shell that does input/output
redirection or creates pipes between processes

e Understand how it is that the OS protects



More TYCD: Virtual Memory

 Understand the mechanism:

 address translation: mapping from a virtual address to a physical address
through a page table
 finding the page table index to locate a page table entry
* checking the valid bit
 extracting the physical frame number
e combining it with the offset from the address to create the physical address

* Page faults
* because the valid bit is false

* because the page table entry doesn’t permit access of the type being
attempted (read, write, execute)

* Holes in the virtual address space
* How?
* Why?



More TYCD: Processes / Address Spaces

How do you create a process?
* What has to happen to create a process?

* What doesn’t happen?
* Role of exec()

Memory layout for process address space
 stack / heap / static data / text
* permissions for each section of the address space

Process control blocks and process state
* running / runnable / blocked

The context switch mechanism

* Why must the hardware save the PC at the time of an interrupt/trap/exception? Why can’t
the software do it?

Copy on write
* What is it used for?
* How does it work?



More TYCD: Threads

* Why aren’t processes enough?
 Creating a thread (in Java)
* join()’ing with a thread

* Why use both kernel threads and user level threads?



More TYCD: Threads / Synchronization

* Recognizing code that has a race condition

* Recognizing code that is a critical section
* And code that isn’t

* Resolving critical sections through mutual exclusion

* in general, using locks
* in Java, using “synchronized” methods

* Recognizing when deadlock might occur

* Can multiple processes have a race condition (among them)?
Can they deadlock?



Limits to Parallelism / Concurrency

* Number of cores on system
* Number of threads in the application

* Depth of pipeline
* Dependences among instructions (RAW, WAW, WAR)

* Another TYCD:
Amdahl’s Law (relating “inherently sequential” fraction of execution

time to maximum possible speedup)



That’s It

* Thank you for this quarter.

* The final will be online (Canvas) next Wednesday, 2:30-4:20.
| will be online for email’ed questions.



