Computer Systems

CSE 410 Winter 2022
17 —Race Conditions / Critical Sections / Mutual Exclusion

Address space with threads

OXFFFFFFFF

A

address space

v

0x00000000

thread 1 stack

;

thread 2 stack

;

thread 3 stack

;
T

heap
(dynamic allocated mem)

static data
(data segment)

code
(text segment)

“— SP(T1)

“— SP(T2)

“— SP(T3)

“— PC(T2)
~— PC(T1)
“— PC(T3)

Race Conditions

* Arace condition is code whose result may depend on the timing of
the threads’ executions
* Result obtained depends on things that can’t be predicted,
like dynamic decisions of the scheduler or cache hits/misses

Example Race Condition

Starting worker threads
Thread A here
Thread B here
Thread B here
Thread B here
Thread A here
Thread A here
Thread B here
Thread A here
Thread B here
Thread B here
Thread A here
Thread B here
Thread A here
Thread B here
Thread A here
Thread B here
Thread A here
Thread A here
Thread B here
Thread A here
Worker threads have terminated

Starting worker threads
Thread A here
Thread B here
Thread A here
Thread A here
Thread B here
Thread A here
Thread A here
Thread B here
Thread B here
Thread B here
Thread A here
Thread B here
Thread A here
Thread B here
Thread B here
Thread A here
Thread A here
Thread B here
Thread B here
Thread A here
Worker threads have terminated

Race Conditions

* Race conditions are generally undesirable
* They’re undesirable unless every interleaving of execution of
statements by the threads results in an outcome that is
considered correct

Critical Sections

* Critical sections are sections of code that may not get the right result
if executed by more than one thread at a time (but will get the right
result if executed by only one thread at a time)

* They’re a particular kind of race condition

* An example: x=x+1

 If x is 0 and two threads execute this statement at once (on the same variable
X), the final result may be 1 or it may be 2

e Why?

Critical Sections: read-modify-write

* x =X + 1 generates assembler like this:

* lw x6, x(x0)
addi x6, x6, 1
sw X6, x(x0)

 Assume x starts out with value 0 and two threads execute this code
at different times

Cycle | x6oncoreO | x6 on core 3
(thread 0) (thread 1)

0 lw: O

1 addi: 1

2 sw:l

3 lw: 1

4 addi: 2

5 sw: 2

6

Critical Sections: read-modify-write

* x =X + 1 generates assembler like this:

* lw x6, x(x0)
addi x6, x6, 1
sw X6, x(x0)

 Assume x starts out with value 0 and two threads execute this code
concurrently

Cycle | x6 on core X6 on core 3
0 (thread 0) | (thread 1)

0 Iw: O

1 addi: 1 Iw: 0
2 sw:l addi:1
3 sw: 1l

Critical Sections

* Critical sections happen when two or more threads apply a read-
modify-write operation to the same memory (variable)
* Fetch a value
* Compute a new value based on the fetched value
* Write the new value back to memory

e Critical sections do not happen when
* Threads are just reading
* Threads are operating on different sets of variables (e.g., locals)

Synchronization: mutual exclusion

* Critical sections are resolved by ensuring that at most one thread
executes the code within them at a time

* That kind of synchronization is called mutual exclusion

* One way to achieve mutual exclusion is through synchronization
variables

10

Synchronization Variables: Locks

* Locks (sometimes called mutexes) are synchronization variables with
two states:

* locked
* unlocked

e and two operations
* lock()
* unlock()

A thread calling lock()
» changes the lock state to lock, if it is currently unlocked
* blocks, if the lock is currently locked

A thread calling unlock()

* if there are no threads blocked on the lock, changes the lock state to
unlocked()

* if there are threads blocked on the lock, unblocks one of them

Locks and Critical Sections

* Example:
lock incrementLock;
int x =0;

// critical section code possibly executed by multiple threads
incrementLock.lock();

X=X+1;

incrementLock.unlock():

* There can be only one thread performing x=x+1 at a time, so the
value of x at all times equals the number of times that line of code
has been executed by any thread

12

Other Examples of Critical Section

* Inserting an element into a data structure (e.g., linked list, binary
search tree)

* Removing an element from a data structure
* Allocating space in the heap
* Creating a new thread (e.g., stack allocation)

Problems with Locks

* lock() and unlock() are somewhat expensive

* Can be very noticeable if the amount of work in the critical section is small

* buggy code might have a code path that fails to unlock() a lock

* Eventually, the application seems to just hang

 Solution: (A) Debug!

(B) Use language support to enforce unlocking

For instance:
lock(myLock) {

}

* Code with more than one lock might deadlock

... critical section code

Iock(IockA)v\

lock(lockB)

unlock(lockB)

-

v lock(lockB)
lock(lockA)

unlock(lockA)

unlock(lockA)

unlock(lockB)

Solution: always acquire
locks in a particular order

14

Java: Synchronizing Access to Objects

* The Java programming language supports threads and thread
synchronization as part of the language

* \We’ve seen the Thread class...

e Synchronization:
* Java provides support for mutual exclusion of operations on an object
 All classes are subclasses of Object
* An Object has a lock
* A method can be annotated as “synchronized”

* Only one synchronized method can be executed at a time
* Entering the synchronized method requires locking the object lock
* Leaving the synchronized method unlocks the object lock

15

Java Exam P | € (klaatu:/courses/cse410/22wi/lava-race-example/)

* N worker threads increment a shared counter K times and then
decrement it K times
e x=x+1//Ktimes
e x=x—1//Ktimes
S

* If the workers are correctly synchronized, the final value will be O

Worker / (Unsynchronized) Counter Classes

public class Worker extends Thread {
Counter c; public class Counter {

int iterations;
protected int count = 0;

Worker(Counter c, int iterations) {

this.c=c; public void increment(int amount) {
this.iterations = iterations; count += amount;
} }
public void run() { public int getValue() {
// count up return count;
for (int i=0; i<iterations; i++) { }
c.increment(1); }
}

// count down
for (int i=0; i<iterations; i++) {
c.increment(-1);
}
}
}

Unsynchronized Counter Results: Incorrectness

S java Unsynch 1000000 1
Count=0

S java Unsynch 1000000 2
Count = 96097

S java Unsynch 1000000 3
Count =16789

S java Unsynch 1000000 3
Count = 264651

S java Unsynch 1000000 4
Count =-198217

Worker / (Synchronized) Counter Classes

public class Worker extends Thread {
Counter c;
int iterations;
public class SynchronizedCounter extends Counter {

Worker(Counter ¢, int iterations) { protected int count=0;
this.c = c;
this.iterations = iterations; public synchronized void increment(int amount) {
} count += amount;
}
public void run() {
// count up public int getValue() {
for (int i=0; i<iterations; i++) { return count:
// spend some time }
for (int j=0; i<100; i++) { }
}
c.increment(1);
}

// count down

for (int i=0; i<iterations; i++) {
for (int j=0; i<100; i++) {
}
c.increment(-1);

}

}
}

Synchronized Counter Results: Correctness

S java Synch 1000000 1
Count=0
S java Synch 1000000 2
Count=0
S java Synch 1000000 3
Count=0
S java Synch 1000000 3
Count=0
S java Synch 1000000 4
Count=0

What About Performance?: Unsynchronized

Arguments are:
(1) value to count to
(2) number of threads to use

S time java Unsynch 100000000 1
Count=0
real 0m0.898s

The (constant) total number of

iterations is divided as equally as $ time java Unsynch 100000000 2

possible among the threads. Count =-6938115
real 0mO0.744s

S time java Unsynch 100000000 3
Count =-1669864
real O0mO0.620s

S time java Unsynch 100000000 4
Count=1321204
real O0mO0.531s

What About Performance?: Synchronized

S time java Synch 100000000 1

Count=0 / vs. 0.898s unsynchronized
O0m1.201s

real

S time java Synch 100000000 2

Count=0 16 times slower!
real 0m19.623s /

S time java Synch 100000000 3

Count=0 Pretty much the same slower
real 0m20.131s /

Performance is complicated...

22

Speedup: A Measure of Parallel Performance

e Speedup S(p) is defined as
(execution time with 1 core) / (execution time with p cores)

* Speedup is generally sub-linear
* You won’t get a speedup of 6 running on six cores, you’ll get something less

e Why?

23

Amdahl’s Law

e Let F be the fraction of the execution time on 1 core that is
“inherently sequential”

e Cannot be speeded up

* Then Speedup(infinity) <= 1/F

* Example: if 10% of the single core computation time is inherently
sequential, speedup due to parallel execution can never be greater
than 10

* “Proof”: S(p) <=1/ (F + (1-F)/p)

24

summary

* Multiple threads within one process are useful to:

» Simplify the code — multiple logically distinct control flows are easier to

express that way than as one control flow that hops around from one activity
to another

* The current homework

* Employ parallelism (the simultaneous use of multiple cores) to try to improve
performance

* When you have multiple threads you have to worry about
coordinating the order of operations performed by each
* Race conditions — unpredictable results
e Critical sections — possibly incorrect results

Summary (cont.)

* We order the computations performed by different threads using
synchronization variables

* Locks — only one thread may hold the lock at any time
directly relevant to achieving mutual exclusion for critical sections

* Understanding the performance you’ll achieve using parallelism isn’t
straightforward
* There are overheads imposed (relative to single threaded) by the need to
synchronize the threads

* There are memory interactions — data may have to move from one core to
another, which is slow

 Amdahl’s Law gives an upper bound on potential parallel
performance, showing it is limited by the fraction of the work that is
“inherently sequential”

