Computer Systems

CSE 410 Winter 2022
16 —Threads

Review: What's “in” a process?

* A process consists of (at least):

* An address space, containing
* the code (instructions) for the running program
 the data for the running program

* Thread state, consisting of
* The program counter (PC), indicating the next instruction
* The stack pointer register (implying the stack it points to)
* Other general purpose register values

* A set of OS resources
» open files, network connections, sound channels, ...

* That’s a lot of concepts bundled together!

* Decompose ...

e address space
of control (stack, stack pointer, program counter, registers)

* OS resources

The Big Picture

* Threads are about concurrency and parallelism
 Parallelism: physically simultaneous operations for performance
* Concurrency: logically (and possibly physically) simultaneous operations for
convenience/simplicity
* One way to get concurrency and parallelism is to use multiple
processes

* The programs (code) of distinct processes are isolated from each other

* Threads are another way to get concurrency and parallelism
* Threads “share a process” — same address space, same OS resources
* Threads have private stack, CPU state — are schedulable

Parallelism/Concurrency and Communication

« Communicating between processes can be slow because one explicit
goal of the process abstraction is isolation

* We can get fast communication by sharing memory between address
spaces

App A App B

Thread Aqqress Space Memory Address Space Thread

\) f

Y Process

Process

One Process, Multiple Threads

* Each thread is a flow
of control

e All threads share all
of memory (both

App A
PP Memory virtual and physical)

Address Space

e Threads execute the
same code
* Threads operate on

the same variables,

Threads

except...
K / By convention, local
\/ variables (stack
variables) are
Process touched only the

thread that creates
them

Concurrency/Parallelism via Threads

* Imagine a web server, which might like to handle multiple requests
concurrently
* While waiting for the credit card server to approve a purchase for one client,

it could be retrieving the data requested by another client from disk, and
assembling the response for a third client from cached information

* Imagine a web client (browser), which might like to initiate multiple
requests concurrently
* The CSE home page has dozens of “src=...” html commands, each of which is

going to involve a lot of sitting around! Wouldn’t it be nice to be able to
launch these requests concurrently?

* Imagine a parallel program running on a multiprocessor, which might like
to employ “physical concurrency”
* For example, multiplying two large matrices — split the output matrix into k

regions and compute the entries in each region concurrently, using k
processors

What’s needed to support concurrent
execution?

* In each of these examples of concurrency (web server, web client,
parallel program):
* Everybody wants to run the same code
* Everybody wants to access the same data
* Everybody has the same privileges
* Everybody uses the same resources (open files, network connections, etc.)

e But you’d like to have multiple hardware execution states:

* an execution stack and stack pointer (SP)
* traces state of procedure calls made
* the program counter (PC), indicating the next instruction

 a set of general-purpose processor registers and their values

Threading

* Key idea:
» separate the concept of a process (address space, OS resources)

* ... from that of a minimal “thread of control” (execution state: stack, stack
pointer, program counter, registers)

* This execution state is usually called a thread, or sometimes, a
lightweight process

thread

A Java Example

* This code is available at klaatu:/courses/cse410/22wi/lect16Files

* The example has a main(). main() is executed by the single thread that is created
when the process is created (i.e., when the program is run)

* main() creates two worker threads. The threads run concurrently — that is,
logically at the same time (and possibly physically at the same time)

* There is no specific order in which instructions executed by the two threads
related to each other

e Each run of the program can (and will) result in different orderings of instructions
executed by different threads

* The instructions executed by a single thread follow the normal control flow rules

Example: main() and workers

Synchronization

main main
thread create thread join
and start / /

\
\ =7
l

>
/ Time
% worker
g worker

10

Worker code

public class Worker extends Thread {
private String myName;

Worker(String name) {
this.myName = name;

}

public void run() {
try {
for (int i=0; i<10; i++) {
// pretend to do some work
int sleepTime = (int)(Math.random() * 2000.0); // time to sleep in msec.
Thread.sleep(sleepTime);

// print some output to show progress
System.out.printIn("Thread " + this.myName + " here");
}
} catch (Exception e) {
System.out.printin(e);

}
}
}

main() code

public static void main(String[] args) {
Worker wA = new Worker("A"); // create threads
Worker wB = new Worker("B");

System.out.printIn("Starting worker threads");

try {

wA.start(); // start threads executing
wB.start();

wA.join(); // wait until threads are done executing
wB.join();

} catch (Exception e) {
System.out.printin(e);

}

System.out.printIn("Worker threads have terminated");

12

Example Executions

Starting worker threads
Thread A here
Thread B here
Thread B here
Thread B here
Thread A here
Thread A here
Thread B here
Thread A here
Thread B here
Thread B here
Thread A here
Thread B here
Thread A here
Thread B here
Thread A here
Thread B here
Thread A here
Thread A here
Thread B here
Thread A here
Worker threads have terminated

Starting worker threads
Thread A here
Thread B here
Thread A here
Thread A here
Thread B here
Thread A here
Thread A here
Thread B here
Thread B here
Thread B here
Thread A here
Thread B here
Thread A here
Thread B here
Thread B here
Thread A here
Thread A here
Thread B here
Thread B here
Thread A here
Worker threads have terminated

13

OS: Implementing threads and processes

* OS’s support two entities:

* the process, which defines the address space and general process attributes
(such as open files, etc.)

* the thread, which defines a sequential execution stream within a process

» A thread is bound to a single process / address space
» address spaces, however, can have multiple threads executing within them
 sharing data between threads is cheap: all see the same address space
* creating threads is cheap too!

* Threads become the unit of scheduling
» processes / address spaces are just containers in which threads execute

(old) Process address space

OXFFFFFFFF

4

A

address space

A

0x00000000

y

stack

(dynamic allocated mem)
'
T

heap

(dynamic allocated mem)

static data
(data segment)

code
(text segment)

“— SP

“ PC

15

(new) Address space with threads

OXFFFFFFFF

A

address space

v

0x00000000

thread 1 stack

;

thread 2 stack

;

thread 3 stack

;
T

heap
(dynamic allocated mem)

static data
(data segment)

code
(text segment)

“— SP(T1)

“— SP(T2)

“— SP(T3)

“— PC(T2)
~— PC(T1)
“— PC(T3)

16

Process/thread separation

e Concurrency (multithreading) is useful for:
* handling concurrent events (e.g., web servers and clients)
* building parallel programs (e.g., matrix multiply, ray tracing)
* improving program structure (the Java argument)

e Multithreading is useful even on a uniprocessor
e even though only one thread can run at a time
 useful program structuring mechanism

e Supporting multithreading — that is, separating the concept of a
process (address space, files, etc.) from that of a minimal thread of

control (execution state), is a big win
 creating concurrency does not require creating new processes
» “faster / better / cheaper”

“Where do threads come from?”

* Natural answer: the OS is responsible for creating/managing threads

* For example, the kernel call to create a new thread would
* allocate an execution stack within the process address space
* create and initialize a Thread Control Block
* stack pointer, program counter, register values
e putit onthe ready queue

* We call these kernel threads
* There is a “thread name space”

* Thread id’s (TID’s)
* TID’s are integers (surprise!)

Kernel threads

address
space

3

thread

g

73

17

i ¢ |

os kernel
=

CPU

(thread create, destroy, signal,
wait, etc.)

19

Kernel threads

* OS now manages threads and processes / address spaces
 sthread operations are implemented in the kernel

* OS schedules all of the threads in a system

* if one thread in a process blocks (e.g., on I/0), the OS knows about it, and can run other
threads from that process

* possible to overlap I/O and computation inside a process
* Kernel threads are cheaper than processes
* |less state to allocate and initialize

* But, they’re still pretty expensive for fine-grained use
» orders of magnitude more expensive than a procedure call

* thread operations are all system calls
e context switch
e argument checks

 must maintain kernel state for each thread

“Where do threads come from?” (Part 2)

* There is an alternative to kernel threads

* Threads can also be managed at the user level (that is, entirely from
within the process)

* alibrary linked into the program manages the threads

* because threads share the same address space, the thread manager doesn’t need to
manipulate address spaces (which only the kernel can do)

 threads differ (roughly) only in hardware contexts (PC, SP, registers), which can be
manipulated by user-level code

» the thread package multiplexes user-level threads on top of kernel thread(s)
* each kernel thread is treated as a “virtual processor”

* we call these user-level threads

User-level threads

address
space

3

thread

3

l

[

os kernel

l

CPU

user-level
thread librar

(thread create, destroy,
signal, wait, etc.)

227

User-level threads: what the kernel sees

address
space

3

thread

l

®
os kernel

i

CPU

23°

User-level threads: the full story

address
space

3

thread

user-level
thread librar

(thread create, destroy,
Pz signal, wait, etc.)

s

¢ kernel threads
oS kerp\el

CPU

(kernel thread create, destroy,
signal, wait, etc.)

24"

User-level threads

e User-level threads are small and fast

* managed entirely by user-level library
* E.g., pthreads (Libpthreads.a)

* each thread is represented simply by a PC, registers, a stack, and a small
thread control block (TCB)

 creating a thread, switching between threads, and synchronizing threads are
done via procedure calls
* no kernel involvement is necessary!

 user-level thread operations can be 10-100x faster than kernel threads as a
result

User-level thread implementation

* The OS schedules the kernel thread

* The kernel thread executes user code, including the thread support
library and its associated thread scheduler

* The thread scheduler determines when a user-level thread runs
* it uses queues to keep track of what threads are doing: run, ready, wait

* just like the OS and processes
* but, implemented at user-level as a library

26

Thread context switch

* VVery simple for user-level threads:
 save context of currently running thread
* push CPU state onto thread stack

e restore context of the next thread
* pop CPU state from next thread’s stack

e return as the new thread
e execution resumes at PC of next thread

* Note: no changes to memory mapping required!

* This is all done by assembly language

* it works at the level of the procedure calling convention
 thus, it cannot be implemented using procedure calls

How to keep a user-level thread from
hogging the CPU?

e Strategy 1: force everyone to cooperate
* a thread willingly gives up the CPU by calling yield ()

* yield () callsinto the scheduler, which context switches to another ready
thread

* what happens if a thread never calls yield () ?

* Strategy 2: use preemption

* scheduler requests that a timer interrupt be delivered by the OS periodically
 usually delivered as a UNIX signal (man signal)

* signals are just like software interrupts, but delivered to user-level by the OS instead of
delivered to OS by hardware

 at each timer interrupt, scheduler gains control and context switches as
appropriate

summary

* You often really want multiple threads per address space

* Kernel threads are much more efficient than processes, but they’re
still not cheap

* all operations require a kernel call and parameter validation

* User-level threads are:
* really fast/cheap
» great for common-case operations
* creation, synchronization, destruction

e can suffer in uncommon cases due to kernel obliviousness
* |/O
e preemption of a lock-holder

