
Computer Systems
CSE 410: Winter 2022

15 - Processes

OS Abstractions

2

CPU

Main
Memory

Disk

Process

File System

Thread

Address
Space

3

Processes

1. What is a “process”?
2. What's the process namespace?
3. How are processes represented inside the OS?
4. The execution states of a process?
5. How are they created?
6. Making creation fast(er)
7. Shells
8. An example of process-process communication:

signals

4

1. What is a process?
• The process is the OS’s abstraction for execution

• A process is a program in execution

• It's the OS-provided higher level abstraction for the hardware CPU and main
memory resources

• E.g., notions of real time are simplified to sequential execution of successive
instructions

• The simplest (classic) case is the sequential process
• An address space (abstraction of memory)
• A single thread (abstraction of the CPU)

• A (sequential) process is:
• the unit of execution
• the unit of failure
• the unit of scheduling
• the dynamic (active) execution context

• compared with program: static, just a bunch of bytes

address space

thread

5

What’s in a process?
• A process consists of (at least):

• an address space, containing
• the code (instructions) for the running program
• the data for the running program

• static data area
• the stack

• thread state, consisting of:
• the program counter (PC), indicating the next instruction
• the stack pointer register (implying the stack it points to)
• Other general purpose register values

• a set of OS resources
• open files, network connections, sound channels, …
• other process metadata

• In other words, it’s all the stuff you need to run the program or to re-start it, if
it’s interrupted at some point

6

A process’s address space (idealized)

0x00000000

0xFFFFFFFF

address space

code
(text segment)

static data
(data segment)

heap
(dynamic allocated mem)

stack
(dynamic allocated mem)

PC

SP

7

2. The process namespace
• (Like most everything, the particulars depend on the particular OS)

• The name for a process is called a process ID (PID)
• An integer

• The PID namespace has scope global to the system
• Only one process at a time has a particular PID

• Operations that create processes return a PID
• e.g., fork(), clone()

• Operations on processes take PIDs as an argument
• e.g., kill(), wait(), nice()

8

• The kernel maintains a data structure to keep track of process
state

• Called the process control block (PCB)

• OS keeps all of a process’s hardware execution state in the
PCB when the process isn’t running

• PC, SP, registers, etc.

• When a process is unscheduled, the state is transferred out of the
hardware into the PCB

• (when a process is running, its state is spread between the PCB and the CPU)

3. Processes in the OS

9

The PCB
•The PCB is a data structure with many, many fields (“meta-data”):
–process ID (PID)
–parent process ID
–execution state

–program counter, stack pointer, registers

–address space info
–user id (uid)
–group id (gid)
–scheduling priority
–accounting info
–pointers for use in state queues

•In Linux:
–over 95 fields

10

PCBs and Hardware State
• When a process is running, its hardware state is loaded on a CPU

• PC, SP, registers
• CPU core contains current values

• When the core is taken away from the process, the OS saves the
register values (e.g., in the PCB)

• when the OS returns the process to the running state, it loads the
hardware registers from the saved values

• The act of switching a CPU from one process to another is called a
context switch

• timesharing systems may do 100s or 1000s of switches/sec.
• takes a few microseconds on today’s hardware

• Choosing which process to run next is called scheduling

11

This is (a
simplification of)

what each of
those PCBs looks

like inside!

Process ID

Pointer to parent

List of children

Process state

Pointer to address space descriptor

Program counter
stack pointer

(all) register values

uid (user id)
gid (group id)

euid (effective user id)

Open file list

Scheduling priority

Accounting info

Pointers for state queues

Exit (“return”) code value

12

4. Process execution states
• Each process has an execution state, which indicates what it is

currently doing
• Ready: waiting to be assigned to a CPU core

• could run, but other processes have the CPU cores
• Running: executing on a CPU core
• Waiting (aka “blocked”): waiting for an event, e.g., I/O completion

• cannot make progress until the event happens

• As a process executes, it moves from state to state
• UNIX: run ps, STAT column shows current state
• which state is a process in most of the time?

13

States of a process (slightly simplified)

running

ready

blocked

trap (system
call)

(read from file)

interrupt
(unschedule)

dispatch /
schedule

interrupt
(I/O complete)

creation

14

State queues

• The OS maintains a collection of queues that
represent the state of all processes in the system
• typically one queue for each state
• e.g., ready, waiting, …

• Each PCB is queued onto a state queue according to
the current state of the process it represents
• as a process changes state, its PCB is unlinked from one

queue, and linked onto another

• Once again, this is just as straightforward as it
sounds! The PCBs are moved among queues, which
are represented as linked lists.

15

State queues

• There may be many wait queues, one for each type
of wait (particular device, timer, message, …)

head ptr
tail ptr

chrome (1365) emacs (948) ls (1470)

cat (1468) chrome (1207)head ptr
tail ptr

Wait queue header

Ready queue header

These are PCBs

16

PCBs and state queues
• PCBs are data structures

• dynamically allocated inside OS memory

• When a process is created:
• OS allocates a PCB for it
• OS creates a virtual address space and a thread
• OS initializes PCB
• OS puts PCB on the ready queue

• As a process computes:
• OS moves its PCB from queue to queue

• When a process is terminated:
• PCB may hang around for a while (exit code…)
• What is the process state?

• Eventually, OS deallocates its PCB

17

5. Process creation

• New processes are created by existing processes
• creator is called the parent
• created process is called the child

• UNIX: do ps, look for PPID field

• what creates the first process, and when?

18

19

Process Creation Semantics

• (Depending on the OS) child processes inherit certain
attributes of the parent

• Examples:
• ppid/gid: implies authorization of child
• Open file table: implies stdin/stdout/stderr
• Environment variables
• … other metadata

• On some systems, resource allocation to parent may
be divided among children
• Hierarchical resource allocation limits impact of your

activity on mine

20

UNIX process creation details
• UNIX process creation through fork() system call

• creates and initializes a new PCB
• creates a new address space
• initializes new address space with a copy of the entire contents of the

address space of the parent
• initializes kernel resources of new process with resources of parent (e.g.,

open files)
• places new PCB on the ready queue

• the fork() system call “returns twice”
• once into the parent, and once into the child

• returns the child’s PID to the parent
• returns 0 to the child

• fork() = “clone me”

• (We'll see why in a minute...)

21

testparent – use of fork()
#include <sys/types.h>
#include <unistd.h>
#include <stdio.h>

int main(int argc, char **argv)
{
char *name = argv[0];
int pid = fork();
if (pid == 0) {
printf(“Child of %s is %d\n”, name, pid);
return 0;

} else {
printf(“My child is %d\n”, pid);
return 0;

}
}

22

testparent output
spinlock% gcc -o testparent testparent.c
spinlock% ./testparent
My child is 486
Child of testparent is 0
spinlock% ./testparent
Child of testparent is 0
My child is 571

23

fork() … exec()
• Q: So how do we start a new program, instead of just forking the old program?
• A: first fork, then exec

• int exec(char * prog, char * argv[])
• (actually, there are many flavors of exec)

• stops the current process
• loads program ‘prog’ into the address space

• i.e., overwrites existing process image
• initializes hardware context, args for new program
• places PCB onto ready queue
• note: does not create a new process!

• To run a new program:
• fork()
• Child process does an exec()
• (parent either waits for child to complete, or not)

24

Why fork() … exec()?
• Q: Why not just createProcess()

• (Windows does that...)

• A: Parent process code gets to run as the child process when it is first
created

• This is a very general way for the system to allow the parent to
customize the environment in which the child will run

• e.g., is input read from a file or the keyboard? Does output go to the terminal
or to a file?

• Linux shell example:
• ./myprogram <myInputFile >myOutputFile
• The shell forks, then...
• the shell, running in the new process, connects input to

myInputFile and output to myOutputFile
• the shell exec’s myprogram
• when myprogram runs, it reads input from the file and outputs to

the file without myprogram’s code knowing anything about that

25

6. Making Creation Fast(er)
• The semantics of fork() say the child's address space is a copy

of the parent's

• Implementing fork() that way is slow:
• Have to allocate physical memory for the new address space
• Have to copy parent's address space contents into child's address space
• Have to set up child's page tables to map new address space

• We can speed this up...

26

Method 1: vfork()
• vfork() is the older of the two approaches talked about here

• It's an instance of changing the problem definition into something we
can implement efficiently

• Instead of “child address space is a copy of parent's,” the semantics are
“child address space is the parent's”

• With a “promise” that the child won't modify the address space before
doing an exec()

• This is unenforced. You use vfork() at your own peril.
• When exec() is called, a new address space is created, new page tables

set up for it, and it's loaded with the new executable
• This saves the wasted effort of duplicating the parent's address space

(setting up page tables and copying contents) when the child is just going
to exec() anyway (which is common)

27

Method 2: copy-on-write
• This approach retains the original semantics, but copies “only what is necessary,” rather

than the entire address space

• On fork():
• Create a new address space
• Initialize its page tables to the same mappings as the parent's (i.e., they both point to

the same physical memory)
• No copying of address space contents have occurred to this point
• Set both parent and child page tables to make all pages read-only
• If either the parent or child writes to memory, a protection fault occurs

• When the fault occurs:
• Allocate a new physical frame for the child, and point its page table entry at it
• Copy the current contents of the parent address space to that frame
• Mark the entries in both the parent's and child's address space writable for that page
• Restart the process doing the write, re-executing the write instruction

• The result: only pages modified by the parent or child ever end up being copied

28

7. UNIX shells

int main(int argc, char **argv)

{

while (1) {
printf(“$ “);

char *cmd = get_next_command();

int pid = fork();

if (pid == 0) {

exec(cmd);

panic(“exec failed!”);

} else {

wait(pid);

}

}

}

$./myprog

29

Input/Output Redirection

• $./myprog <input.txt >output.txt # UNIX

• Each process has an open file table
• by (universal) convention:

• 0: stdin
• 1: stdout
• 2: stderr

• a child process inherits the parent’s open file table

• Redirection: open files before executing child process
code

30

UNIX shells: input/output redirection

int main(int argc, char **argv)

{

while (1) {
printf(“$ “);

char *cmd = get_next_command();

int pid = fork();

if (pid == 0) {
manipulate stdin/stdout/stderr

exec(cmd);

panic(“exec failed!”);

} else {

wait(pid);

}

}

}

$ foo myFile.txt <input.txt >output.txt

31

More…

• Note that redirection is completely transparent to the
child process

• What about
• $./myprog >>output.txt
• $./myprog >output.txt 2>&1
• $./myprog | less
• $./myprog &

32

8. Interprocess Communication (IPC)

• Q: Why is it hard for two processes on the same system to
communicate with each other?

• A: Because one goal of the process abstraction is to insulate a process
from every other process

• Separate address spaces, so they don’t share memory

• How can processes communicate with each other?
• Internet protocols (e.g., HTTP, TCP)

Works for any processes, anywhere.
Not the most efficient approach for processes running on the same
system

• Shared virtual memory
Fast, but primitive. Applications must construct own mechanism for
synchronizing

• Signals
A notification system. Interesting to us as an example of an event-based
programming mechanism

33

8. Interprocess communcation via signals
• Processes can register event handlers

• Feels a lot like event handlers in Java, which...
• Feel sort of like catch blocks in Java programs

• When the event occurs, process asynchronously jumps to event handler
routine

• Used to catch exceptions
• Notifications from OS to application (“upcalls”)
• Policy/mechanism splits

• Also used for inter-process communication (IPC):
• a process can trigger an event in another one using signal

34

Signals
Signal Value Action Comment
--
SIGHUP 1 Term Hangup detected on controlling terminal

or death of controlling process
SIGINT 2 Term Interrupt from keyboard
SIGQUIT 3 Core Quit from keyboard
SIGILL 4 Core Illegal Instruction
SIGABRT 6 Core Abort signal from abort(3)
SIGFPE 8 Core Floating point exception
SIGKILL 9 Term Kill signal
SIGSEGV 11 Core Invalid memory reference
SIGPIPE 13 Term Broken pipe: write to pipe with no readers
SIGALRM 14 Term Timer signal from alarm(2)
SIGTERM 15 Term Termination signal
SIGUSR1 30,10,16 Term User-defined signal 1
SIGUSR2 31,12,17 Term User-defined signal 2
SIGCHLD 20,17,18 Ign Child stopped or terminated
SIGCONT 19,18,25 Continue if stopped
SIGSTOP 17,19,23 Stop Stop process
SIGTSTP 18,20,24 Stop Stop typed at tty
SIGTTIN 21,21,26 Stop tty input for background process
SIGTTOU 22,22,27 Stop tty output for background process

35

Example Use
• You're implementing Apache, a web server

• Apache reads a configuration file when it is launched
• Controls things like what the root directory of the web files is, what permissions there

are on pieces of it, etc.

• Suppose you want to change the configuration while Apache is running
• If you restart the currently running Apache, you drop some unknown

number of user connections

• Solution: send the running Apache process a signal
• It has registered an signal handler that gracefully re-reads the

configuration file

Example Code
void catch_function(int signo) {
puts("Interactive attention signal caught.");
}

int main(void) {
// Set above function as signal handler for the SIGINT signal:
if (signal(SIGINT, catch_function) == SIG_ERR) {
fputs("An error occurred while setting a signal handler.\n", stderr);
return EXIT_FAILURE;
}
puts("Raising the interactive attention signal.");
if (kill(getpid(),SIGINT) != 0) {
fputs("Error raising the signal.\n", stderr);
return EXIT_FAILURE;
}
puts("Exiting.");
return EXIT_SUCCESS;
// exiting after raising signal
}

From: https://en.wikipedia.org/wiki/C_signal_handling
Available on klaatu: /cse/courses/cse410/22wi/lect15Files

