Computer Systems

CSE 410 Autumn 2022
14 — Virtual Memory

OS “Review”: Why bother with an OS?

* Application benefits
e programming simplicity
* see high-level abstractions (files) instead of low-level hardware details (device registers)
 abstractions are reusable across many programs
 portability (across machine configurations or architectures)
* (ideally) code may be OS dependent, but isn’t hardware dependent

e User benefits

 safety
e program “sees” its own virtual machine, thinks it “owns” the computer
* OS protects programs from each other
e OS fairly multiplexes resources across programs
« efficiency (cost and speed)
* share one computer across many users
e concurrent execution of multiple programs

The OS and hardware

* An OS mediates programs’ access to hardware resources (sharing and
protection)
e computation (CPU)
* volatile storage (memory) and persistent storage (disk, etc.)
* network communications (TCP/IP stacks, Ethernet cards, etc.)
* input/output devices (keyboard, display, sound card, etc.)

* The OS abstracts hardware into logical resources and well-defined
interfaces to those resources (ease of use)
* processes (CPU, memory)
* files (disk)
» programs (sequences of instructions)
* sockets (network)

OS Abstractions

T
3
.

Main
Memory

T

T

— Thread

— Address
Space

_/

— File System

— Process

OS Abstractions: Virtual Memory

3 -
— File System

Main
Memory

T

— Thread

Virtual Memory (VM)

* Overview and motivation

* Indirection

* VM as a tool for caching

* Memory management/protection and address translation
 Virtual memory example

Virtual Memory Motivation

* Virtual memory:

1. Solves problems due to fragmentation

Provides memory protection

3. Insulates the program from considerations of the
amount of physical memory available on the
systems

N

Fragmentation

* Programs need to run in contiguous hunks of memory (because the
compiler assumes that — e.g., instructions, arrays)

Memory Memory

This not this

Fragmentation

* The OS supports multiprogramming
* SO many programs are loaded into memory at once

Memory Memory

Two apps
terminate

N

Fragmentation

Want to start next app

The free memory isn’t contiguous
Free memory is “fragmented”

There is enough free memory for it, but...

app

v

10

Fragmentation: Possible Solutions

1. Move all programs in memory to coalesce free space

) NS

* super slow

* doesn’t work anyway (because the application may have addresses

stored in registers, causing huge problems if it is suddenly moved in
memory)

11

Fragmentation: Possible Solutions

2. Divide memory into equal sized chunks and require every program

to fit in one chunk
(like parking spaces in a parking lot)

0
"""""" internal fragmentation
1
2
* Pros
* Any program can be loaded into any unallocated memory
* (Cons

* Internal fragmentation
* program that needs more than the fixed size chunk can’t ever
run

12

Address Translation

* Main idea:
* Divide memory into small, fixed size pieces, called frames

* Divide the program’s memory into small, (identically) fixed sized pieces called
pages
* Now any page can fit in any frame. Yeah!

* But, didn’t we say that the program had to occupy contiguous memory?

App A M App B
Address Space emory Address Space

Virtual Address Space

* The program operates inside a “virtual address space”
* Addresses are contiguous, starting at 0
* The compiler compiles for execution in a virtual address space

* The pages of the virtual address space are “mapped” to real memory

* The hardware translates the virtual addresses issued by the program to
real addresses during execution

App A M App B
Address Space emory Address Space

Address Translation

* (We’re going to do this in decimal, but machine would work in binary)
» Suppose pages are 1000 bytes long

* Then virtual address 00234 in app A’s virtual address space is:
e virtual page 00, which is physical frame 3
* at offset 234 in that page / frame

* So the physical address of 01234 would be 03234

App A M App B
Address Space emory Address Space

Address Translation

* Programs issue virtual addresses
e Same instruction set as before
* l[w x5, 234(x0) # what does this do?
* CPU adds 234 to x0 and gets 234 as the virtual address

* Virtual address is translated to physical address 3234 and the word there
is loaded from memory

App A App B
Address Space Memory Address Space
virtual
address
234
. physical
/ address
3234

16

Address Translation

* We need a way to “represent the arrows in the diagram”
* Page Tables

* We need hardware to translate from virtual addresses to physical
addresses

* The Memory Map Unit (MMU)

App A M App B
Address Space emory Address Space

17

Page Tables

* There is a page table associated with each virtual address space
* The page table is an array, indexed by the virtual page number

e Each entry is a physical frame number
* Each entry also has a “valid bit” indicating whether the virtual page exists

Page Table
App A M Frame V

Address Space emory 3 [1]o0
0 0 0o |11
1 1 5 [1]2
03

2 2
0|4

3
05

4
0|6
> 0|7

Page Tables: Address Translation

* Performed by the MMU
* Pages in our example are artificially 1000 (decimal) bytes long

Virtual Address: 0234
Page Table

Frame V
3 |1{0 page number

—

l offset
5 [1]2

0|3 31234 Physical Address

19

Address Translation: Memory Protection!

* The OS allocates physical memory and sets up the page table for each
virtual address space

* So long as the OS ensures that the physical frames in use by
application A don’t appear in the page table for the virtual address
space in use by application B, B cannot possibly read or write A’s
memory

* None of B’s virtual addresses map to the memory used by A

Page Tables: Page Faults

* Suppose a virtual address is issued and the page table doesn’t have a
valid mapping

* That means the virtual page is not loaded anywhere in memory

* Why? _
Page Table Virtual Address: 6234

Frame V
3 [1]0 page number
0 |11 6]234
offset
5 [1]2
03
Page Fault!
0|4
015 e the trap handler mechanisms is invoked
ol6 e control passes to the OS
0|7

21

Page Faults: Independence from Physical
Memory Size

 Virtual memory supports virtual address spaces that are larger than
physical memory

* Pages not current in physical memory are stored on disk

Page Table
Frame V
Disk 3 Lo Memory « Memory is 4 frames
0 |11 * Maxvirtual address
Y e
D 5 1112 space size is 8 pages
— * Actual VAS space is 7
- <« | aaa |13
pages
«. | 7] bbb |O|4
7 cee |0
1-7|o|6
0 |0]7

22

Page Faults: Non-Contiguous VAS

* The virtual address space can have “holes”
* References to the holes causes a page fault

Stack

hole

Heap

Static Data

Text

23

Page Protection

* The MMU is fetching a page table entry on every memory reference

* So long as we're doing that, it’s useful to add some additional
functionality to the page table entries

* In particular, we can provide access right bits
* read
* write
* (execute)
* An operation that tries to violate the page’s access rights causes a
page fault

* Example Page Table Entry

Frame Valid Read Write Execute
Number

22 1 1 0 1

Page Protection

* Example Page Table Entry

Frame Valid Read Write Execute
Number
22 1 1 0 1

 Stack: writable? readable? executable?

* Heap (space for “new”): writable? readable? executable?
e Static Data: writable? readable? executable?

» Text (instructions): writable? readable? executable?

Page Protection

* Example Page Table Entry

Frame Valid Read Write Execute
Number
22 1 1 0 1

 Stack: writable? readable? executable?

* Heap (space for “new”): writable? readable? executable?
e Static Data: writable? readable? executable?

* Text (instructions): writable? readable? executable?

Other Uses of Page Tables

1. Sharing memory between address spaces
1. Page table entry in two different page tables names same physical frame

2. Writes to that page in one address space show up in the other address
space
3. Provides very fast communication from one address space to another

2. Memory Mapped I/O

1. One way the ISA can provide control of I/O devices is to use low memory
addresses “to mean” the IO devices
1. E.g., a store word to address 224 is actually sending 32 bits to the Ethernet controller

2. No provide protection by page

Page Tables: Shared Memory

« Communicating between address spaces is as fast as writing memory
e But usually need some kind of synchronization on top of that

App A M App B
Address Space emory Address Space

28

Memory Mapped |/O

* The hardware recognizes that low addresses are to be sent to the 10 devices, and
are not talking about memory

* Only the page table for the OS maps any virtual addreses to the low physical
address

OS -
|/O Devices
Address Space Memory
> <\v

29

Virtual Memory: Summary 1

* Each running program has its own virtual address space

* Compilers know this and compile code as if all of memory belongs to
the program being compiled

* It does, it’s just that it’s virtual memory
* Virtual memory relies on address mapping

* The operating system maintains a page table for each virtual address
space that maps virtual pages to physical frames

* Page table entries have access permission bits as well as the mapping
information

* A page fault occurs when accessing a virtual address:
 that isn’t currently mapped to physical memory, or
» with an operation that isn’t allowed on that page (e.g., writing)

Virtual Memory: Summary 2

* Virtual memory solves the fragmentation issue that the OS has when
trying to load applications into variable sized chunks of contiguous
memory

e Any virtual page can be loaded into any physical frame

* Virtual memory solves the memory protection issue
* Applications issue virtual addresses, not physical addresses

* The OS ensures that physical memory in use by application A is not pointed
to by any page table entry for application B, meaning that there is no virtual
address B can issue that will map to A’'s memory

31

Virtual Memory: Summary 3

* Virtual memory / address mapping has can be used in other useful
ways
* OS can help applications by making pages that hold instructions read-only
* OS caninsert a “hole” in the virtual address space between the stack and the

help so that a page fault occurs if the stack gets too big, rather than just
overwriting the heap

* Programs are more portable, because they don’t require the system they’re
running on to have any specific amount of real memory
* Avirtual address space can be larger than the amount of physical memory on the system
e OS tries to get “hot pages” in memory, and keeps the rest on disk

* A page fault occurs if a reference is made to a page that is currently on disk, causing it to
be brought into memory

* Virtual memory can be used to protect I/O devices, using “memory mapped
I/On

