Computer Systems

CSE 410 Winter 2022

13 — OS Introduction: Basic Functioning

What This Course is About

Application | Operating Software in
Process System Execution

Instruction Set

Architecture
Instruction J (e.g., x86-64)
memory
Address Data
Instruction M aCh | ne
Organization
(e.g., Core i7-8550)

) l Hardware

Logic Implementation

Roles of the Operating System: (1) Security

Applications

OS

Hardware

The Usual Picture
of Runtime

* “The OS sits between the application and the hardware. The application
can’t touch the hardware, it can only ask the operating system to touch

the hardware for it.”

* True: Application programs can’t directly manipulate any hardware and need to

ask the OS to do it for them, except for

* False: Application instructions run directly on the CPU and directly read and write

main memory

Roles of the Operating System: Security

Application Application OS

* Applications run directly on CPU /
memory

Memory * The OS runs directly on CPU / memory

* Only the OS can communicate with all
other devices

CPU/Memory Security: Implications

Application

Application

OS

Memory

1. Need a way to protect memory of one
app from instructions/bugs in another

CPU/Memory Security: Implications

Application Application OS

2. Need a way to make sure an
application “gives back” the CPU to
the OS — what if it goes into an infinite

loop?

Memory

CPU/Memory Security: Implications

Application

'\\‘\

Application

OS

Memory

3.

If the OS can use the CPU to write on
the disk, why can’t the applications do
the same thing?

CPU/Memory Security: Implications

Application Application OS

'\\‘\

4. An application can’t use subroutine
Memory call to invoke the OS (why not?), so
how does it “ask the OS to touch the
disk” for it?

Hardware (ISA) support for OS
Implementation

* The security issues just outlined cannot be solved by software alone
(that is, without adding features to the ISA we’ve seen so far)

* The first thing we need is a way for the CPU to be able to determine
whether the code it is currently running is the OS or just an
application

* If the PC points to an instruction that will write the disk, the CPU should
execute it IF the CPU is currently running the OS and it should refuse to

execute it otherwise

* Privileged Instructions

* Instructions the CPU will execute if and only if they are issued by the OS
code, and not by any other code

ISA Support for OS: Privileged Mode and
Privileged Instructions

* The CPU has additional state (beyond the registers we have tal,mked
about) that lets it distinguish between “privileged mode” and
“unprivileged mode”

* Depending on the ISA, there might be a special register that contains a bit
indicating the current privilege mode

* Depending on the ISA, there might be more than just two levels of privilege

* There are special operations (beyond the ones we’ve talked about)
that the CPU is willing to execute only if is currently in privileged
mode

* If not, it raises an error using a mechanism we’ll see shortly

* Privileged instructions are a solution to “how can the OS do I/O but

applications can’t”
* and other very similar operations

10

Privileged / Unprivileged Mode

OS
(boot)

Priv

Application

Application OS
Unpriv Priv

Time

Unpriv

11

Multiprogramming

e —————

Time

* Each core alternates between running the OS and running some application
* Thisis called multiprogramming

* Each transition involves a change in privilege level
e Either from privileged to unprivileged (OS to app) or vice versa

* These transitions happen 100’s to 1000’s of times per second

e Gives the illusion that many programs are running at the same time
* Well, they are, in the way shown

* Each transition is called a context switch

Context Switching: Execution State

 When an application’s execution is suspended, all of the core’s
registers and the PC are saved

* When the OS decides to resume that application’s execution, it
reloads the registers with their saved values and branches to the
saved PC

* Because the memory used by the application isn’t changed while it’s
suspended, when it resumes execution the application executes
exactly as if it hadn’t been suspended

e (unless it looks at a real time clock...)

Context Switching: Privilege Mode

* The return from the OS to resumption of the application code
involves a transition from privileged to unprivileged mode

* Easy — the OS executes an instruction that turns off privilege

* The transition from the application to the OS involves a transition
from unprivileged to privileged mode

* How can that happen? If unprivileged code can cause a transition to
privileged mode, what keeps it from doing so whenever it wants for
whatever reason it wants?

Context Switching: The Trap Mechanism

* Unprivileged code can cause a transition to privileged mode
whenever it wants
e There’s an instruction for that

* BUT the unprivileged code cannot control what instruction is
executed in the first cycle after privilege is acquired

* The OS determines that

* The “trap mechanism” does these, indivisibly in one cycle:
» Saves the current PC somewhere well known, then
* Loads the PC with an address stored in somewhere only the OS can write
(e.g., a “privileged register”)
* Sets the CPU in privileged mode

* The OS sets the “trap handler address” during boot. After that, any
transition from unprivileged to privileged mode causes a branch to
the address of a handler routine established by the OS

Trap Handling: System Calls

* A “system call” is a lot like a subroutine call to the operating system,
except that privilege is acquired on the way

* Because the “call” cannot specify the address in the operating system
at which to execute (because it must execute starting at the trap
handler address), “what method to call” must be an explicit
argument

* To system call, do this:

* Put a system call number in a register (say, a7). That indicates what you are
trying to do (e.g., open a file)

e Put additional arguments, depending on the call, in registers a0-a6
* Execute a trap instruction
* When the call returns, look for return value in, say, a0

A kernel crossing illustrated
read(int fileDescriptor, void *buffer, int numBytes)

Save user PC

PC = trap handler address
Enter kernel mode

user mode

kernel mode v
trap handler

PC = saved PC

Enter user mode
Save app state

Verify syscall number
Find sys_read() handler in vector table

v

sys_read() kernel routine

Verify args
Initiate read
Choose next process to run
Setup return values

v Restore app state

ERET instruction

OS Introduction & Structure

17

Security Recap to This Point

1. Need a way to protect memory of one app from instructions/bugs in

another
We don’t yet know how to do this

2. Need a way to make sure an application “gives back” the CPU to the

OS — what if it goes into an infinite loop?
We don’t yet know how to do this

3. If the OS can use the CPU to write on the disk, why can’t the

applications do the same thing?
Privilege vs. unprivileged mode and privileged instructions

4. An application can’t use subroutine call to invoke the OS (why not?),

so how does it “ask the OS to touch the disk” for it?
It uses the trap mechanism

18

Getting the CPU Back

* Each core alternates between running CPU code and running
application code
* The OS chooses which application to “dispatch” next
* Making that decision is called “(CPU) scheduling”

* When an application is dispatched, it is in control of the CPU

* |IF it makes a system call, then the OS gets a chance to execute and
make a new scheduling decision

* What if the application code doesn’t make a system call? What if it
instead does something compute intensive for a few
seconds/hours/days?

Getting the CPU Back: count-down timer

* We can’t rely on the applications to cause a transition back to the
operating system while they’re running

* So, we need a way to guarantee that transition happens without
relying on code
* So, need hardware support

» Besides the registers, PC, privilege mode bit(s), and trap handler
address information, CPU’s also have a (count-down) timer

Getting the CPU Back: count-down timer

 When the OS dispatches application code, it sets the timer to some
value (say, 10 msec.)

* If the application makes a system call before 10 msec. has expired,
great

* The OS is entered, gets a chance to make a scheduling decision, and resets
the timer (to 10 msec., say)

* Otherwise, when 10 msec. has gone by, the timer will have counted
down to O

 When it does, it “raises an interrupt”
* That invokes the trap handler mechanism, which

e Causes the cpu to transition to privileged mode and to start executing the OS
trap handler

More Vocabulary Than You Need

* The trap handler mechanism is invoked in three circumstances, and
each has a specific name (although people are often not careful

about which they use)
* Atrap is an intentional invocation of the mechanism, to make a system call
* Aninterrupt is an “asynchronous” execution of the trap handling mechanism,
because some I/O device wants attention for some reason
* E.g., the timer
* E.g., data has arrived on the network
* An exception is a “synchronous” execution of the trap handler mechanism

because the hardware has detected some problem with the execution of a
particular instruction

* E.g., trying to execute a privileged instruction when in unprivileged mode

Key |deas

* One role of the operating system is security
* Protecting one application from bugs or intentional violation by another

* For performance reasons, the OS must allow applications to run directly on
the CPU and memory hardware

* We need a memory protection mechanism (comes later in the course)

e CPU protection is provided by:
* having privileged and unprivileged CPU modes
* having privileged instructions that raise exceptions when executed unless the CPU
is in privileged mode
* a trap handling mechanism that allows the CPU to (re)gain control of the CPU, to

save the state of the application that was running, and to late restore the state of
the application and start it running back where it was, as though it had never

stopped
e a countdown timer that can raise an interrupt

