Computer Systems

CSE 410 Winter 2022
12 — Memory Organization and Caches

Memory and Caches

* Cache basics

* Principle of locality

* Memory hierarchies

« Cache organization

* Program optimizations that consider caches

Making memory accesses fast!

* What we want: Memories that are
.
*Big
* Fast
* Cheap

* Hardware: Pick any two

* So we'll be clever...
* Pick “fast and cheap” (but not big), and
* “big and cheap” (but not fast)

Problem: Processor-Memory Bottleneck

Processor performance
doubled about
Bus bandwidth

every 18 months
evolved much slower

oo | = Main
eg
Memory

Problem: lots of waiting on memory

Processor performance
doubled about .
every 18 months Bus bandwidth

evolved much slower

Solution: caches

Problem: Processor-Memory Bottleneck

Main
Memory

Cycle time vs. Memory Access TIme

= Processor vs Memory Performance

1000 7. BT STy
CPU-DRAM Gap ‘/'//

1980: no cache in microprocessor;
1995 2-level cache

o . b 1-12-and-I3-cache-how-does-cpu-cache-work/

CSE 410 Aul3

10-1

How does cache affect performance?

int array[SIZE];
int A = 0;

for (int i = 0 ; i < 200000 ; ++ i) {
for (int j = 0 ; j < SIZE ; ++ j) {
A += array[jl;

TIME

SIZE

Actual Data
45
a0 =
35
30
(]
£ E8
E
20

10 /
5

0 1000 2000 3000 4000 SO00 6000 7000 8000 9000

SIZE

Cache

« English definition: a hidden storage space for provisions, weapons,
and/or treasures

 CSE definition: computer memory with short access time used for the
storage of frequently or recently used instructions or data (i-cache
and d-cache)

* Used to optimize data transfers between system elements with
different characteristics (main memory cache, network interface
cache, 1/0 cache, etc.)

General Cache Mechanics

Smaller, faster, more expensive
memory caches a subset of
the blocks

Cache [8 [o J[1a][3

Data is copied in block-sized
transfer units

Larger, slower, cheaper memory
Memory | 0 ” 1 ” 2 ” 3 | viewed as partitioned into “blocks”
[« s [s I[71
[s][9 J[w0 J[1]
22 J[Ca3 J[2a J[s]
©ecc0cccccsccccce

General Cache Concepts: Hit

Request: 14 Data in block b is needed
Block b is in cache:
cche [(s JCmd]| o
Memory [o J[1 J[2][3 |
L1l [s [7]
[8][o J[1o [1]
[|

12 J[13][24][15

10

11

CSE 410 Aul3

General Cache Concepts: Miss

Request: 12 Data in block b is needed

| Block b is not in cache:
Miss!

e |

Block b is fetched from

Request: 12
a memory

Block b is stored in cache

determines which block
gets evicted (victim)

Memory l 0 ” 1 ” 2 ” 3 l * Placement policy:
| 4 ” 5 ” 6 ” 7 | determines where b goes
| 8 ” 9 ” 10 ” 11 | * Replacement policy:
[]

12 [13][14][15

12

10-2

Cache Organization Questions

How can the processor quickly determine whether a memory reference is
a hit or a miss?

If there’s a miss, where in the cache should we put the data we have to
retrieve from the layer(s) above?
* Which data item currently in the cache should we overwrite with the
new data?

On a read miss, should the new data be put in the cache at all?
On a write miss, should the written data be (a) put in the cache, or (b)
written to the higher layer(s), or (c) both?s

Core i7-8700K (2017)

CPU | Caches | Mainboard | Memory | pD | Graphics | Bench | About |

Procassar
Name Intel Core i7 —
Code Name Coffee Lake Max TOP | 95.0 W @
Package Socket 1151LGA CORE 17
Technology | 14nm Core voltage | 0.516V s
Specification Intel® Core™ i7-5700K CPU @ 3. 70GHz (ES)
Famiy 8 Model E Stepping A
Ext. Famiy 6 Ext. Model 3 Revision)

Instructions |MMX, SSE, SSE2, SSE3, SSSE3, 55E4. 1, S5E4.2, EMG4T, VT-x,

JES, AVX, AVX2, FMA3, TSX
Clocks (Core #0) Cache

Core Speed | 4696.57 Mriz LiData | 6x32KBytes | -way

Mutipler | x47.0(8-47) || Lilnst. | 6x32KBytes | 8-way
BusSpeed | 99.93MHz Level2 | 6x256KBytes | 4way

Level3 [12MBytes 16-way

Cores | 6

Threads | 12

Z Ver.180.1x64 _ Tools || Valdate Close

13 14

Core i7-8700K (2017)

CPU Caches | Mainboard | Memory | SPD | Graphics | Bench | About |

L1D-Cache
Size [32KBytes X6
Descriptor | 8-way set associative, 64-byte line size
L1I-Cache
Size |32KBytes x6
Descriptor [8-way set assodative, 64-byte ine size
L2Cache
Size | 256 KBytes x6

Desariptor | 4-way set assodative, 64-byte ne size
L3 Cache
Size |12MBytes
Descriptor | 16-way set associative, 63-byte line size

-Z Ver.180,1x64 _ Toos || Vaidate Close

Memory and Caches

* Cache basics

* Principle of locality

* Memory hierarchies

« Cache organization

* Program optimizations that consider caches

15 16

Why Caches Work

* Locality: Programs tend to use data and instructions with addresses
near or equal to those they have used recently

* Temporal locality:
« Recently referenced items are likely I:I:I:I block
to be referenced again in the near future
* Spatial locality:
* Items with nearby addresses tend (¢)

to be referenced close together in time

* How do caches take advantage of this?

Example: Locality?

sum = 0;

for (i = 0; i < n; i++)
sum += a[i];

return sum;

* Data:
* Temporal: sum referenced in each iteration

* Spatial: array a[] accessed in stride-1 pattern (and blocks are larger than one word)

* Instructions:
+ Temporal: cycle through loop repeatedly
* Spatial: reference instructions in sequence

* A high cache hit rate is essential to good performance
* Both the hardware designer and the programmer are concerned with it

* Being able to assess the locality of code is a crucial skill for a programmer

17 18

CSE 410 Aul3

10-3

Another Locality Example

int sum_array 2d(int a[M][N])
{
int i, j, sum = 0;

for (1 = 0; i < N; i++)
for (3 = 0; 3 < M; j++)
sum += a[j]l[i];
return sum;

* What is “wrong” with this code?
* How can it be fixed?

Another Locality Example

int sum_array 2d(int a([M] [N])
{

int i, j, sum = 0;

for (i = 0; i < N; i++4)
for (j = 0; j < M; J++)
sum += a[j][i];
return sum;

i=0
j=0 j=1 j=2
‘[0[0] ‘[0][1] ‘[0][2] ‘[1][0] ‘[1]{11 ‘[1][2] ‘[1][0] ‘[2][1] ‘[z]m ‘

* Array is stored in row major order
* Accesses are in column major order
* No spatial locality

19

Memory and Caches

* Cache basics

* Principle of locality

* Memory hierarchies

* Cache organization

* Program optimizations that consider caches

21

Cache Performance Metrics

* Miss Rate
* Fraction of memory references not found in cache (misses / accesses)
=1-hitrate
* Typical numbers (in percentages):
* 3%-10% for L1
+ Can be worse for higher level
* Hit Time
 Time to deliver a line in the cache to the processor
* Includes time to determine whether the line is in the cache
* Typical hit times: 1 - 2 clock cycles for L1

* Miss Penalty
« Additional time required because of a miss
* Typically 50 - 200 cycles

23

CSE 410 Aul3

20

Cost of Cache Misses

* Huge difference between a hit and a miss
* Could be 100x, IF just L1 and main memory

* Would you believe 99% hits is twice as good as 97%?
* Consider:
Cache hit time of 1 cycle
Miss penalty of 100 cycles

* Average access time:
* 97% hits: 1 cycle +0.03 * 100 cycles = 4 cycles
* 99% hits: 1 cycle +0.01 * 100 cycles = 2 cycles

* This is why “miss rate” is used instead of “hit rate”

22

Memory Hierarchies

« Some fundamental and enduring properties of hardware and
software systems:
* Faster storage technologies almost always cost more per byte and have lower
capacity
* The gaps between memory technology speeds are widening
« True for: registers <> cache, cache ¢> DRAM, DRAM &> disk, etc.
* Well-written programs tend to exhibit good locality

* These properties complement each other beautifully

* They suggest an approach for organizing memory and storage
systems known as a memory hierarchy

24

10-4

Memory Hierarchies

* Fundamental idea of a memory hierarchy:
« Each level, k, serves as a cache for the larger, slower, level, k+1, behind it

* Why do memory hierarchies work?
* Because of locality, programs tend to access the data at level k more often
than they access the data at level k+1.

* Thus, the storage at level k+1 can be slower, and thus larger and cheaper per
bit.

* Big Idea: The memory hierarchy creates a large pool of storage that
costs as much as the cheap storage near the bottom, but that serves
data to programs at the rate of the fast storage near the top.

25

Intel Core i7 Cache Hierarchy

Processor package

Core 0 Core 3

L1 i-cache and d-cache:
32 KB, 8-way,
Access: 4 cycles

L2 unified cache:
256 KB, 8-way,
Access: 11 cycles

‘ L3 unified cache

L3 unified cache:
(shared by‘all cores) 8 MB, 16-way,

‘ Access: 30-40 cycles

Block size: 64 bytes for

‘ Main memory all caches.

27

Memory and Caches

* Cache basics

* Principle of locality

* Memory hierarchies

* Cache organization

* Program optimizations that consider caches

29

CSE 410 Aul3

An Example Memory Hierarchy

registers\ CPU registers hold words retrieved from L1 cache
on-core L1, L2 L1 cache holds cache lines retrieved from L2 cache,
smaller, cache 12 from L3
faster,
lier
costlie shared L3 L3 cache holds cache lines retrieved
per byte e from main memory
Larger, main memory Main memory holds disk blocks
; rger, (DRAM) retrieved from local disks
slower,
cheaper
Local disks hold files
per byte local secondary storage retrieved from disks on
(local disks) remote network servers
remote secondary storage
(distributed file systems, web servers)

28

Core i7-8700K (2017)

CPU Caches | Mainboard | Memary | 5D | Graphics | Bench | About |

L1D-Cache

L3 Cache

32KBytes x6
§-way set associative, 64-byte line size

32KBytes x6
8-way set assodative, 64-byte lne sze

256 KBytes x6
4-way set assodative, 64-byte ine size

12 MBytes

[16-way set assodiative, 64-byte line size

CPU-Z ver. 1801064 _ Tools |T| Valdate

Close

30

10-5

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
"1

Memory

Putting data in the cache

Address stream: 0000, 1101, 0110, 0111, ...

Cache

Here we’re assuming we move individual bytes
into the cache. We’ll make that more realistic in
a bit.

Looking up data in the cache: How?

31

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
"1

Memory

Looking up data: Tags

Address stream: 0110, ...
Hit or miss?

Tag Data

0000

1101 Cache

0110

0111

We store not just the data, but also the address
(which we call a tag)

Memory
Address stream: 0110, ...
ggg? Hit or miss?
0010
0011
0100
0101
0110
0111 Cache
1000
1001
1010
1011
1100
1101
1110
111
32
Fully Associative Caches
Memory
Address stream: 0110, ...
Hit or miss?
0000
gg?:} Tag Data
0011 0000
0100 1101 Cache
0101 0110
0110 0111
0111
1000 .
1001 * Lookup: compare the requested address against
1010 all the tags at once
1011 * That scheme is called a fully associative cache
1100 * Pro: any address’s data can be put into any line of
1101 the cache
1110 + Con: need a lot of hardware — a comparator per
1111 cache line

33

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
111

Memory

Direct Mapped Caches

At the other extreme, we could
restrict each address to exactly one
cache line

On lookup, either it’s it that line or
it'’s not in the cache

Index Data
00
01 Cache
10
1

Pro: Much less hardware, no lookup
time penalty

35

CSE 410 Aul3

34
Direct Mapped Caches
Memory
* We need a mapping from an address to a
0000 cache line.
0001 ¢ Must be able to compute the mapping very fast.
0010
0011
0100
0101 Index Data
0110 00
0111 01 Cache
1000 10
1001 "
1010 i
1011
:13(1) 'xxlxx Address
1110
1111 Tag Pro: Much less hardware, no lookup
time penalty
36

10-6

Direct Mapped Caches

Memory
0000 Con: Conflicts, even when there are
0001 “empty” cache lines
0010
0011
0100
0101 Index Data
0110 00
0111 01 Cache
1000 10
i ————
1010 '
1011
Hg? xx|xx Address
1110
"1

Address - tag|index

* Q: Why use low order bits for index and high bits for tag, rather than
vice versa
* tag | index, or
* index | tag
« A: Programs tend to sweep through memory sequentially
* e.g., instructions
* e.g., arrays
« AND by using the low order bits as the index, sequential memory
makes use of the entire cache
« 00| 00
00 | 01
00|11
01| 00 tag | index vs. index | tag
01]01
01|10
0111

37

A small optimization

* We don’t need to save the low order bits of the address in the tag
storage, because they’re implied by the line number

Tag Data

Cache

39

What’s a cache block? (or cache line)

Byte Block (line)
Address number
0000000
0000100
0001000
0001100
0010000
0010100
0011000
0011100
0100000
0100100
0101000
0101100
0110000
0110100
0111000
0111100

0

1

Index

01
10
1"

41

CSE 410 Aul3

38
Exploiting Spatial Locality — Cache Blocks
Byte Block
Address number
0 0 Moving many bytes into the cache
4 on a miss is exploiting spatial locality
8
12
16 Index
20
24 0
28 !
32 2
36 3
40
44
48 The main time penalty to fetch from
52 memory is latency.
56 Bringing in two (or many) words from
60 memory costs nearly the same time as
bringing in just one.
40
What's a cache block? (or cache line)
Byte Block (line)
Address number
0000000 0 tag | index | offset
0000100 00| 01| 100 address
0001000
0001100
0010000 Index
0010100
0011000
0011100
0100000
0100100
0101000
0101100
0110000
0110100
0111000
0111100
42

10-7

Set Associative Caches

* What if we could store data in any place in the cache?
* That'’s called a fully associate cache

« But that might slow down caches... so we do something in between.

1-way 2-way 4-way 8-way
8 sets, 4 sets, 2 sets, 1 set,
1 block each 2 blocks each 4 blocks each 8 blocks
Set Set Set Set
0
1 0
2 . 0
: 0
2
5 1
6 3
7

direct mapped

fully associative

43

Block size is 16 bytes.
+ 0x1833in binary is 00...01 1000 0011 0011.

m-bit Address Tag

k=3 k=2

1-way associativity

2-way associativity
8 sets, 1 block each

4 sets, 2 blocks each

Set Set
0

| } 0
2

— 1
4 2
5

6 3
7

Example placement in set-associative caches

Where would data from address 0x1833 be placed?

(m-k-4) bits k bits

4-bit Block
Offset
k=1

4-way associativity
2 sets, 4 blocks each

Set

45

Memory and Caches

* Cache basics

* Principle of locality

* Memory hierarchies

* Cache organization (part 2

* Program optimizations that consider caches

47

CSE 410 Aul3

Example placement in set-associative caches

Where would data from address 0x1833 be placed?
+ Block size is 16 bytes.
+ 0x1833in binary is 00...01 1000 0011 0011.
(m-k-n) bits k bits
. n-bit Block
m-bit Address Tag Offset

k=2 k=2 k=?

4-way associativity
2 sets, 4 blocks each

1-way associativity

2-way associativity
8 sets, 1 block each

4 sets, 2 blocks each

Set Set Set
0

1 0

2 , 0
3

4 2

5 1
6 3

7

44

Block replacement

Any empty block in the correct set may be used for storing data.
* How can the CPU tell if a block is empty or not?

What should happen if there are no empty blocks?
* Replace something, of course, but what?

Caches typically use schemes related to least-recently-used
* Guess that the future will look like the past

46

General Cache Organization (S, E, B)

E = 2¢ lines per set
A

N,—

[f [eieiere]]
[f oood| -

S=2%sets [[l Jooeef]

B = 2 bytes of data per cagife line (the data)

valid bit

cache size:
Sx ExB data bytes

48

10-8

* Locate set
« Check if any line in set
has matching tag
E = 2¢ lines per set * Yes + line valid: hit
- A ~ « Locate data starting

at offset
[I [oeed]

Cache Read

I I o< e |
$=2sets | ” |' i ’l | tag set block
index offset

data begins at this offset

DOBEm|
valid bit —
B = 2" bytes of data per cache line (the data)

Address of byte in memory:

49

Example: Direct-Mapped Cache (E = 1)

Direct-mapped: One line per set
Assume: cache block size 8 bytes

Address of int:

valid? + match?: yes = hit

|
]
[] G CLEELEED]
|

block offset

51

E-way Set-Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes

Address of short int:

DEBEEDEEM]
CLEGLEGED| FLEGLEGED)|
CLLEGEELED)| [LLEEEELED)|

CLLEGEELED)| FLEEEELED|

DEBEEDEEM]

find set

53

CSE 410 Aul3

Example: Direct-Mapped Cache (E = 1)

Direct-mapped: One line per set
Assume: cache block size 8 bytes

Address of int:
L] = ||0I1I2I3I4I5I6I7I| e [o.01 [100]
[]] [T T[T T=T¢ 7]
[] [[ol:To[oT=T=Te 7]

[0 CLEECEEE)

find set

S=2°sets

50

Example: Direct-Mapped Cache (E = 1)

Direct-mapped: One line per set
Assume: cache block size 8 bytes

Address of int:
valid? + match?: yes = hit

|
[
[] CLEEEEED
:

block offset

int (4 Bytes) is here

No match: old line is evicted and replaced

52

E-way Set-Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes

Address of short int:

compare both

valid? + | match: yes = hit

|
G CLECLEED)|

o CEEELEGEH)|

block offset

54

10-9

E-way Set-Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes

Address of short int:

compare both

valid? + | match: yes = hit

|
o] CECLEEED)| |
I

G CEECLECED)|

block offset
short int (2 Bytes) is here

No match:
* One line in set is selected for eviction and replacement
* Replacement policies: random, least recently used (LRU), ...

55

What about writes?

* Multiple copies of data exist:
* L1, L2, possibly L3, main memory
* What is the main problem with that?

Types of Cache Misses

* Cold (compulsory) miss
* Occurs on first access to a block
* Conflict miss
* Most hardware caches limit blocks to a small subset (sometimes just one) of the
available cache slots
« if one (e.g., block i must be placed in slot (i mod size)), direct-mapped
« if more than one, n-way set-associative (where n is a power of 2)
 Conflict misses occur when the cache is large enough, but multiple data objects all
map to the same slot

+ e.g, referencing blocks 0, 8, 0, 8, ... would miss every time

* Capacity miss

* Occurs when the set of active cache blocks (the working set)
is larger than the cache (just won't fit)

56

What about writes?

« Multiple copies of data exist:
* L1, L2, possibly L3, main memory
* What to do on a write-hit?
* Write-through (write immediately to memory)
* Write-back (defer write to memory until line is evicted)
* Need a dirty bit to indicate if line is different from memory or not
* What to do on a write-miss?
* Write-allocate (load into cache, update line in cache)
* Good if more writes to the location follow
* No-write-allocate (just write immediately to memory)
« Typical caches:
* Write-back + Write-allocate, usually
* Write-through + No-write-allocate, occasionally

57

Intel Core i7 Cache Hierarchy

Processor package

Core 0 Core 3 L1 i-cache and d-cache:

32 KB, 8-way,
Access: 4 cycles

L2 unified cache:
256 KB, 8-way,
Access: 11 cycles

L3 unified cache:
8 MB, 16-way,
Access: 30-40 cycles

L3 unified cache .
(shared by all cores) Block size: 64 bytes for
I all caches.

‘ Main memory ‘

58

Core i7-8700K (2017)

CPU Caches | Mainboard | Memary | 5D | Graphics | Bench | About |

L1D-Cache
Size [32KBytes x6
Descriptor | 8-way set associative, 64-byte line size
L11I-Cache
Size [32KBytes x6
Descriptor [8-way set assodiative, 64byte ine size
L2 Cache
Size | 256 KBytes x6

Desariptor | 4-way set assodative, 64-byte line size

Size |12MBytes
Descriptor | 16-way set assodiative, 64-byte line size

Ver, 1.50.1.x64 Tools |¥ Validate Close

59

CSE 410 Aul3

60

10-10

Memory and Caches

* Cache basics

* Principle of locality

* Memory hierarchies

* Cache organization

* Program optimizations that consider caches

Why Caches Work

« Locality: Programs tend to use data and instructions with addresses
near or equal to those they have used recently

« Temporal locality:

* Recently referenced items are likely
to be referenced again in the near future

« Spatial locality: : ;

* Items with nearby addresses tend
to be referenced close together in time

61

Optimizations for the Memory Hierarchy

* Write code that has good locality

* Spatial: access data contiguously

« Temporal: make sure access to the same data is not too far apart in time
* How to achieve?

* Proper choice of algorithm

* Loop transformations

62

Example: Matrix Multiplication

c = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
int i, 3, ki
for (i = 0; i < n; i++)
for (3 = 0; j < n; j++)
for (k = 0; k < n; k++)
cli*n + §] += ali*n + kI*b[k*n + 3];

63

(Simplistic) Cache Miss Analysis

* Assume:
* Matrix elements are doubles
« Cache block = 64 bytes = 8 doubles
* Cache size C << n (much smaller than n)

* First iteration: i]
* n/8 +n=9n/8 misses
(omitting matrix c) = *
- —
* Afterwards in cache:
(schematic) = *
8wide

64

(Simplistic) Cache Miss Analysis

* Assume:
* Matrix elements are doubles
« Cache block = 64 bytes = 8 doubles
* Cache size C << n (much smaller than n)

n
* Other iterations: ! N
* Again: = —
n/8 + n =9n/8 misses
(omitting matrix c) = *
8wide

« Total misses:
*9n/8*n2=

(9/8) * n

65

CSE 410 Aul3

66

10-11

Blocked Matrix Multiplication

c = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
int i, 3, ki
for (i = 0; i
for (j =
for (k = 0; k < n; k+=B)
/* B x B mini matrix multiplications */

Block size Bx B

for (il = i; il < i4B; il++)
for (31 = j; j1 < j+B; jl++)
for (k1 = k; k1l < k+B; kl++)
c[il*n + j1] += a[il*n + k1]*b(kl*n + j1];

}

j1

@ a b =

= * [|

] i RN =

67

(Simplistic) Cache Miss Analysis

* Assume:
« Cache block = 64 bytes = 8 doubles
* Cache size C << n (much smaller than n)
* Three blocks fit into cache: 3B2 < C

« Other (block) iterations:
* Same as first iteration

. * B2/8 =
2n/B * B?/8 = nB/4 ™ ST

* Total misses:
* nB/4 * (n/B)? = n3/(4B)

n/B blocks

i

Block size Bx B

*

69

Cache-Friendly Code

* Programmer can optimize for cache performance
* How data structures are organized
* Enhance spatial locality
* How data are accessed (e.g., nested loop structure)
« Enhance spatial locality
* Enhance temporal locality

« All systems favor “cache-friendly code”
+ Keep working set reasonably small (temporal locality)
* Use small strides (spatial locality)
* Focus on inner loop code

* Getting absolute optimum performance is very platform specific
« Cache sizes, line sizes, associativities, etc.

(Simplistic) Cache Miss Analysis

* Assume:
* Cache block = 64 bytes = 8 doubles
* Cache size C << n (much smaller than n)
* Three blocks fit into cache: 3B2< C

s |] n/B blocks
* First (block) iteration: u EREEE =
* B2/8 misses for each block = %
* 2n/B * BY/8=nB/4]
(omitting matrix c) [|

Block size Bx B

*I

« Afterwards in cache |
(schematic)

68

Summary
* No blocking: (9/8) *n3
« Blocking: 1/(4B) *n3

* (No blocking)/Blocking = 9B/2
* IfB=8 ratiois 36x
« If B=16 ratiois 72x

The ratio of what?

« Suggests using largest possible block size B (but limit 382 < C)

* Reason for this difference:
Matrix multiplication has inherent temporal locality:
* Input data: 3n2, computation 2n?
« Every array element used O(n) times!

« But program has to be written properly

70

Read throughput (MB/s)

71

CSE 410 Aul3

The Memory Mountain

Intel Core i7
32KB L1 i-cache
32 KB L1 d-cache

8M unified L3 cache

All caches on-chip

lorking set size (bytes)

256 KB unified L2 cache

72

10-12

