Pipeline Hazards

CSE 410

Lecture 11

ISA vs. Implentation

* The ISA defines the operation of the machine as though it were a
single cycle implementation

 All previous instructions have completed before the next one starts

* Pipelining is a mechanism to speed up instruction completion rate
* The semantics of the ISA have to be respected, though

* That is, the effect of a pipelined execution of the instructions must be the
same as what the ISA expect

5-Stage Pipeline

pc
alu Reg[rsl]
pc+4 Branc Reg[rs2] wb
omp.
]
)
| I
imm(p1:0] I |
A\ A 4 l |
| . | [I
Instruction Fetch Instruction ALU Execute Memory Access , Write Back
(F) Decode/Register Reaa (X) | (M) | (W)

Pipelining ..

add x3, x2, x1
or X6, x5, x4
and x9, x8, x7
addi x11x10, 1
sub x14, x13, x12

v

| ! |
| 1 I
|
' Reg(] . |
| W0 hataD I i
i3 Reg[rs1]
- pc I inst[11:7] | | | DMEM
IMEM ——fiddrD Reg[rs2] ddr wb
perd A FH inst{19:15] dd L yfBranc I PR I
: rA DataA DataW
|| inst(24:20] bacter® Data o ||> A |
I Al ! X
I | I I
X imm[§1:0] I I
| I vy | |
I . | I)
Instruction Fetch Instruction ALU Execute Memory Access , Write Back
(F) becode/ Register Rea& (X) | (M) i (W)

sub x14,x13,x12 addix11,x10,1 and x9, x8, x7 or x6, x5, x4 add x3, x2, x1

Hazards — Something goes wrong

time
add x3, x2, x1
or X6, x5, x4
and x9, x8, x7
addi x11, ¥16 x5, 1
sub x14, x13, x12 +— NOW

v

| ! |
| 1]
|
' Reg(] BE |
I e ataD I !
2> Reg(rs1]
. pc I inst11:7) | | DMEM
IMEM _')Ader Reglrs2] ddr wb
poid A b inst[19:15] fadd A pferanc I pataf |
. rA DataA DataW
I [insti24:20{adrB Data o I A '
X All | |
i | I |
: inst[31:7] Imm. imm[$1:0] | 1
| Gen l vV |]
| . 1 I I
Instruction Fetch b Instruction } ALU Execute | Memory Access Write Back
(F) | ecode/Register Rea (X) | (M) I (W)

(D) '

sub x14,x13,x12 addix11,x9,1 and x9, x8, x7 or x6, x5, x4 add x3, x2, x1

Data Hazard

* Later instruction reads a value written by an earlier instruction, but...
value not yet written to register

* Instruction N reads register K

* |[nstruction N-1 or N-2 or N-3 writes register K

* According to the ISA, the write should have occured before the read

* Instruction N should get the value that written by the earlier instruction
* If we're not careful, in a pipelined implementation it won’t

Data Hazards

PCe PCp
Regl(]
ataD

PCm

aluy '
pcet+d

A

IMEM

.I_

ddrD

ddrA DataA

ddrB

;

>

DMEM

_I__).
a|uM-Addr

DataR

insty

DataW
rs : IT'L:)
; imm, -
)Iinstx I insty,

add x6, x5, x4

Ii nstyy,

add x5, x4, x3

In pipelining, this is called a data hazard.

In general, this is called a data dependence, or a true dependence, or a read-after-
write (RAW) dependence.

Data Hazards at Distance 3

aluy '
pcp+4

DMEM
DataR

Addr
DataW

insty

I insty,

add x6, x5, x4

Solution
design the register file so that if one of the read registers will be written this cycle,

send the new value to the output pipeline register
control gets more complicated

Ii nsty,

add x5, x4, x3

Data Hazards at Distance 2

PCk BJ PCp
aluy B
W“l A IMEMI

insty rs2y _
immy
)Iinstx I insty,

add x6, x5, x4 | add x5, x4, x3

instyy,

Solution
* If not alw instruction, “forwarding”
* The value that will be written has already been produce and is in the ALU
pipeline register
* Feed it back to the rs1 or rs2 pipeline register and use it, rather than the value
fetched from the register
e control gets more complicated

Data Hazards at Distance 2

PCe PCp
Regl(]
sDataD
AddrD Sl
1 —> : [rddr DataR
L /\ IMEM —>Addra DataA DataW
L3 ddrB .
inst, N _
‘jl immy
inst inst
)I a = Iins.tW
add x6, x5, x4 | lw x5, 12(x3)

Solution
e |f alwinstruction
* the needed data won’t be available until the end of this cycle
* We don’t want to make the cycle time longer to wait for it to be produced and
then feed it back
* Result: we put a wrong value into the rslx or rs2x pipeline register

 BUT, the value is available when the add instruction moves to the ALU
10

Data Hazards at Distance 2

PCe BJ PCp
et A IMEMI

insty

Solution

add x6, x5, x4

Ii nstyy,

lw x5, 12(x3)

* BUT, the value is available when the add instruction moves to the ALU
e control keeps getting more complicated!

11

Data Hazards at Distance 1

PCk PCp
Regl]
ataD
aI:'ux B o DMEM
r Kddr

+ DataR

Peerd A IMEM ddra DataA DataW
ddrg oo A

insty rs2y _
immy
)Iinstx insty,

add x6, x5, x4 add x5, x4, x3

instyy,

Solution
* |f not a lw instruction, “forwarding”
* Needed value isn’t available during when instructions are at these locations in
pipeline
* But...

12

Data Hazards at Distance 1

PCe PCp
Regl(]
ataD

I3

aluy L DMEM
ddrD ddr o
ata
peetd A IMEM ddra DataA DataW
ddrB] A
insty ’

Imm X

)Iinstx insty, I
instyy,

add x6, x5, x4 add x5, x4, x3

Solution
* |f not a lw instruction, “forwarding”
* Needed value is in ALU pipeline register at start of cycle when it is needed
* (After this, I’'m going to stop repeating that “control gets more complicated”)

13

Data Hazards at Distance 1

PCe PCp
Regl(]
ataD

aI:'ux E B DMEM
rD -Addr
4 3|U DataR
peet Al | IMEM ddra Data — SN
ddrB] |I_|__>
immy, 2m
)Ilnstx

insty
mstM Iinstw
add x6, x5, x4 lw x5, 12(x3)

PCy PCm

Solution
* |f alwinstruction, need value isn’t available at this stage of processing

Data Hazards at Distance 1

PCk PCp

Regl]
I ataD
ddrD
AL | IMEM

ddrA DataA Dataw
ddrB]
insty 2.
imm
X
inst lnst :
1 xr@J N

add x6, x5, x4 IW x5, 12(x3)

DMEM
-Addr DataR

Solution
* |f the instruction producing the value is a Ilw, the value isn’t available at (the

beginning of) this stage

Data Hazards at Distance 1

PCwm
PCk PCp
Regl]
ataD
= S X
r Kddr
- alu DataR
pcet+a A IMEM ddrA DataA w DataW
ddrB L] I—) A
2M

inst, N _ TS
l immy
insty I insty, I
instyy,

add x6, x5, x4 Iw x5,12(x3)

Solution

* By the time the value is available, it’s too late
* Instruction has used ALU but with incorrect input values
* |t won’t have another chance to use the ALU

16

Data Hazards at Distance 1

PCm
PCk PCp])B
Reg|] I_,
ataD >
aI:'ux o I [DVEM
r Kddr
pce+4 /\ IMEM ddra DataA — alu L e DataR
ddrB o I_l—)
I‘@J imm, -
inst inst
add x6, x5, x4 lw x5, 12(x3)

(add xO xO x0)

Solution

* Ifthereis “a bubble” between the two instructions, then we can resolve the
dependence by forwarding (as it’'s now distance two)
* Note: the bubble uses the pipeline but doesn’t do anything useful

e Bubbles slow down the pipel

ine

17

Where Do Bubbles Come From?

* In early RISC architectures, it was the programmer’s responsibility to
explicitly code them

* It was a programmer error to try to use the value produced by a Ilw
instruction in the immediately following instruction

* You had to explicitly code a nop instruction
* The hardware didn’t detect it if you didn’t, you just got wrong results

* Of course, “the programmer” is a compiler, so it’s not such a big deal to have
to insert NOPs where needed

* In RISC-V, things have advanced and building complicated control
isn’t such a big deal
* The hardware inserts the NOP whenever needed

Data Hazards at Distance 1

PCm

+4

aluy '
pcp+4

DMEM
alu M ddr DataR
DataW
A
rs2y

. I r
I

* When control fetches the lw instruction, it remembers that in the inst, pipeline
register

insty

lw x5, 12(x3)

19

Data Hazards at Distance 1

PCe B_

alux
DCF“‘I Al | [[MEM

vV vV ©

imm,,
no)Ilnstx

add—x6, %54

Bubble Solution

Reg(]
DataD

AddrD

AddrA DataA
DataB

A

AddrB

inst,

DMEM
DataR

Addr
DataW

insty,

lw x5, 12(x3)

Ii nsty,

 When control fetches the next instruction, it detects that it reads a register that is
written by the previous instruction, and that the previous instruction was a lw

e So, it

* injects a nop into the insty pipeline register, rather than the add instruction
e disables updating of the PC
* (Yes, control keeps getting more complicated)

20

Data Hazards at Distance 1

>—
©
O
G/

PCr PCp
B— Reg]
MDataD

AddrD el
- adr Addr
etV AL | [IMEM —Shddra DataA DataW e
Lo darg 0228
inst A
D X] rs2y
immy
inst inst
-2 N~
add x6, x5, x4 nop lw x5, 12(x3)

Bubble Solution
* Because the PC wasn’t updated last cycle, this next cycle the same add instruction

is fetched
 Thereis no dependence between the add and the nop, so control “dispatches” the

add instruction

21

Pipeline Summary 1

- ol
IMEM_I_

insty

aluy '
pce+d

A

v VYV ©

Reg(]
DataD

:

AddrD

AddrA DataA

DataB
AddrB

DMEM

Addr DataR
DataW

nst

rs
I insty, I
instyy

add x6, x5, x4

r
li
op

N

PCm
>
IaluM
2
i immy I-l_':
X
nop

nop add x5, x4, x3

Without forwarding, the instruction reading a value written to a register must be
at least four instructions behind the instruction that writes the register.

22

Pipeline Summary 2

PCk B_ PCp
alux
DCF“‘I Al | [[MEM

Inst, 2.

inst
l = IinstW

* With forwarding, the use of a value must occur on a cycle later than
the production of the value

Pipeline Summary 3

» Without forwarding, how many cycles does it take to issue these
instruction sequences?

 addi x4, x0, 10 0: addi x4, 0, 10
addi x5, x0, 20 1: addi x5, 0, 20
add x5, x5, x4 2: nop

3: nop
4: nop
5: add x5, x5, x4

* How many with forwarding?

0: addi x4, 0, 10
: addi x5, 0, 20
2: add x5, x5, x4

(W

Control Hazards

* Control hazards result because we don’t know whether or not a
branch will be taken for two cycles after they’re fetched
* What instruction should we fetch in the cycle after we fetch the branch?

* The next sequential instruction (as if the branch weren’t taken)
* The instruction at the target address (as if the branch were taken)

* Note that the branch needs to get to the ALU stage to compute the target
address, so maybe we have only one choice?

e Control hazards are data hazards on the PC

Control Hazards

What value should the PC be set to during this cycle?

beq x4, x5, loop
add x5, x4, x3
add x8, x7, x6

\ Branch
| MomRead

nstucton [6-0) | MemioReg
=IC¢-'-I:1:H-ALU¢- -

Instruction [19-15] Raad

Raad
addmss

Instruction [24-20)

Instruction
P10

b
Insruction [11-7) Write
Instruction :

Instruction [31-0] %2
]

Instrudtion [30,14-12] | |—, I

:
]
t

beq x4, x5, -20

26

Control Hazards

At the ALU stage we can resolve whether the branch is taken or not, and what the target
address is. But what two instructions should have been issued after the branch?

R— 5
M
u
X
4 1
/
Instructon [6-0)
i ooy ol |
|
| |
| |
: |
|
1] instruction [19-15] [Read = | 1
- bo| Rl2d < : | register 1 Read I
addess 11| instruction [24-20) date 1 :
instruction [1] | gister 2 :
| Insyuciion [11-7] [Write Read mwﬂ;ﬁﬁ_ﬁ
Instruction |1 | register data2 I
memory |1 | |
| :l: |
: | Registors : | Wrte Data
1 = 1 *| data ™
| |.
1 | Instruction [31-0] 32 — : 1 i
i | ALU I | :
1 Gen control | 1 1
| | |
| % 1 | |
1 Instruction [30,14-12] | | ' .
|
? ? beq x4, x5, -20

beq x4, x5, loop
add x5, x4, x3
add x8, x7, x6

27

Control Hazards — Pessimistic

Control notices branch and inserts two nops.

. beq x4, x5, loop
t_ add x5, x4, x3
[\aeRe add x8, x7, x6
Instructon [6-0) o|Control} :I:L:::: .H-I.lq.. I
: jar !
: !
: Instruction [19-15) = :
! Rnad
*[Pe[sdmss i Instruction [24-20) mowerd s E
nstruction |1 regisier 2 I
B9 [{T nsrueton (117 Wite L
Instruction |1 > rogister data2 I
memory]) 1
: dala Registers
I
: Instruction [31-0] %2 i
l) :
: :
! Instruction [30,14-12] |* I .

28

Control Hazards — Speculative

Control fetches instructions consecutively from memory.

Raad
*H«" addmess
Insdrue bon

[310)
Instr uction

Instruction [19-15]

Instruction [24-20)

1
Ins¥ucton [11-7]

add x8, x7, x6

Instruction [31-0]

e e e L o e e)

Instruchion [30,14-12]

Head
Addrass data

Wrie Data

__.1.____________

add x5, x4, x3

beq x4, x5, -20

beq x4, x5, loop
add x5, x4, x3
add x8, x7, x6

If at this stage branch
is taken, turn trailing
instructions to nops (in
pipeline registers).

If branch isn’t taken,
great!

29

Real Machines — Branch Prediction

e Control maintains a table something like this:

PC Next address
0x40180 0x442C0
0x3822C 0x38210

* Each row corresponds to a branch instruction in memory
* The PC column identifies which branch it is

* The “next address” column is a prediction

* For instance, when a branch is taken, put update table with branch
target address; when not taken, update table with next sequential
address.

* Real machines use much more sophisticated schemes

Another Pipelining Summary

* Pipelining is one approach to parallelism
 Parallelism is the key to “going faster”

* The cycle time in a single cycle implementation has to be the worst
case delay through the entire data path

* The cycle time in an N stage pipeline has to be the worst case delay
through any one stage

* So, ideally can get up to an N-fold increase in speed\

* So, why not make a 300-stage pipeline?

Limits to Pipelining

* Because of imbalances in the stages and overheads writing pipeline
registers, when you double the number of stages you probably don’t

have the cycle time

* Hazards result in bubbles
* The more stages, the larger the number of bubbles needed
* The benefits of more stages are limited by the bubbles

* More stages require more pipeline registers and more control, and
those take area and power

Mild Lessons for Software

* Hardware
* Actual performance is much more complicated than just instruction count
e Actual performance is much more complicated than clock rate

e Software
* Long sequences of consecutive instructions go fastest, so...

* Try to avoid branching!

* Some processors have had “conditional instructions” — they were nops (no operation) unless
the last comparison instruction evaluated to true

« Why?

Beyond Pipelining: Instruction Level Parallelism

* Imagine that the processor has many ALUs, possibly many memory
interfaces, an instruction fetch unit that can fetch more than one
instruction at a time, and very sophisticated control

* |t fetches a bunch of instructions at once and tries to complete their
execution in the shortest time possible

add x5, x4, x3
addi x4, x3, 10
add x6, x5, x2
addi x7, x0, 20
add x4, x7, x2

* What is “the shortest time possible”?

Beyond Pipelining: Instruction Level Parallelism

 When an instruction is eligible for execution is limited by the “dependences” it
has

* There are four of them, three of which restrict parallel execution

* RAW — Read-after-write (aka true dependence or dataflow dependence)
addi x10, x8, x9
add x12, x10, x11
* For simplicity, assume each instruction takes one cycle to complete once issued

* WAR — Write-after-read
add x12, x10, x11
addi x10, x8, x9

« WAW — Write-after-write
add x10, x12, x11
addi x10, x8, x9

* RAR — Read-after-read
add x10, x8, x9
add x11, x7, x9

* These two instructions can be executed during the same cycle

35

Dependence Graph

What is “the shortest time
possible” execution (given
unlimited hardware)?

add x5, x4, x3 0: add x5, x4, x3 addi x7, x0, 20
‘ WAR
addi x4, x3, 10 AW
add x6, x5, x2 RAW
addi x7, x0, 20 1. add x6, x5, x2 ddi x4, x3, 10
add x4, x7, x2
WAW

2: add x4, x7, x2

36

Hardware Parallelism: Cores

CPU

i
Instruction Felch Instruction Al Frecute Memory Access
p cocefheger sesd s

Wite Rack

Memory

|
i ! 1
(" Insteation Feteh Instruction i AL Fareute Memary dcces Wit Rack
| Write Rack ™ becodeAegier acal ® o Wl

I

W |

1
Instruction frich Instruction AU Faveute Memory Aress
ceods fReyster Resd o
© !

]

Instruction Felch Instruction AU Execute Memory Access | Write Rack
i) W

|
I

1

becode/Register R
1 (=

37

Hardware Parallelism: Cores

* One way to make a CPU implementation faster is to increase its clock rate
* 1 GHz vs 4.8 GHz

 The downside of that is that the power consumed goes up with the square
of the frequency, and...

* The downside of that is heat — the amount of power that must be dissipated
in the small area of the chip

* That led to multicore processors
* Instead of one core going at 16 GHz have 4 cores going at 4 GHz

* Pro: Potentially lots of instructions per second at manageable heat

* The instructions of each running program can use only one core
* |f you have only one program you want to run, you get only single core
performance

* You “increase exploitable parallelism” by pushing the job up a level. The user
needs to run many programs at once.

Hardware Parallelism: Hardware Threads

 When we parallelize the execution of each program on a single core by
pipelining, performance is limited by both data and control hazards

* When we parallelize the execution of each program by using more advanced
control and set of hardware components and doing dynamic data
dependence at the instruction level, we end up having a lot of hardware
components that sit unused

 Why not use them?
e Can’t find enough ILP (instruction level parallelism) in a single program

* Idea: Run more than one program on the core at a time

* The instructions from one program are always completely independent of those
from a different program
* There are no RAW, WAR, or WAW dependences

* We'll see this idea (increase utilization of hardware by running many
independent programs at once) again in the OS portion of the course

