Midterm Review

CSE 410
Lecture 10

Midterm Practical Matters

* The midterm will be available as a Canvas quiz
* |t will be available during class time (11:30-12:20) on Monday, 2/7/22

* You can take it from anywhere
* If you're on campus and want to take it in the classroom, you’re welcome to
do so

* You can use any resource that you can’t talk to

* Please do not post questions on the discussion board about the
midterm (until late Monday night)

* The course staff will be answering questions by:
* looking for email sent to cse410-staff@cs.Washington.edu
* | will also be in the classroom on campus and can answer questions in person

Midterm Material and Resources

* The material is the course material up to but not including the
datapath (so, Lectures 1-7)

» Study materials are the homeworks, the posted homework solutions,
the slides, and the lectures

* We will attempt to answer questions emailed to cse410-
staff@cs.Washington.edu as promptly as we can over the weekend

* There will be extra office hours over the weekend
* E.g., | have one set up for 3:00-4:00 on Sunday

What This Course is About:
Interfaces and Representations
Algorithm

@
:‘5\\ Code Time: Static

/
.

P
P p—

| Source Language Interface

l Instruction Set Architecture
A Program /\
Source ‘ .
COde » Compiler > exe =~ o LO(JO’ T/me
| R
v N\
_____________________ :,—_:’_‘_’_______ \
\ ////)
i |
Memory I

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- I
-
-
-
-
-
-
-
-
-
-
-
-
-
-
. -
-
-
-
-
-
-
-
-
-
-
-

Change in Representation

Theme: Interfaces and Layering

No Layering

I Layering &
Translation

RISC-V ISA: Load-Store Architecture

CPU
(Central Processing Unit)

Registers

(program counter)

00 N O Ul b WwWwNE O

Example Instruction:
"Add register 3 to register 4 and put the result in register 3”

(Main) Memory

Memory bus

O 00 JOoO Ul B WN - O

N e
w N R O

ISA Key Ideas: Values / Variables / Memory

 Memory: big, slow
* Registers: limited number, fast

* CPU operates only on values in registers
* load/store are only memory operations
* simple(r is faster)
* In general, variables have a “long term” location for their values in
memory but will have their values in registers while being actively
used

* One of the compiler’s jobs is to make good use of registers
* minimize the number of loads and stores required to perform the
computation
» Base-displacement addressing
* Why?
e Example: arrays
* Example: local variables

ISA Key Ideas: Instructions

* Every instruction is 32 bits
* simple(r is faster)
* limits the number of bits available to specify parts of the instruction

* How big can an immediate value be?
* Why are there instructions that use immediate values?
* E.g., how might you change the instruction encoding so that the CPU could have 63 registers

instead of 327
* Instructions (can) modify state
* The value in a register
* add x3,x2,x1
* The value of the program counter
* bne x2, x3, loop

* Avaluein memory
* sw x5, -24(sp)

* Processors don’t execute programs, they execute one instruction after
another
* “Programs” are an abstraction created by higher layers
» “State machine” - fast

Assembly Language and Assemblers

* The ISA defines what memory resources exist and what instructions exist
* |t defines a representation of instructions as bit strings

* Bit strings are handy for the CPU to decode, but not for anyone else

* Assembly language is just a more readable version of machine code, along
with a tiny bit of very straightforward processing

* |labels let the programmer talk about a location without having to compute the
offset the machine instruction requires

* the assembler can easily compute the offsets when given a label

* There are no higher level constructs, though
* No procedures
* No local variables

* Those are created by the way in which the ISA resources and instructions are
used

* Layering

Layering Languages above the [SA

* The ISA supports only very simple operations
* Simpler is faster

* It’s tedious and error prone to express computations in the ISA
* Assembler is just a more human readable representation of the instructions
the hardware can actually execute
* Roughly like “ten” versus “10”
» Compilers are translators from one interface (the language definition)
to another (e.g., instructions in the ISA)

* The higher level language has, roughly, three things:

 variables (values, memory)
» expressions, like X + Y*Z (load and arithmetic instructions)
» control flow like loops and subroutines (branches and jump-and-link)

* (what about types?)

Compilers

* By layering a higher level language on top of the ISA, we get

* More powerful statements for the programmer to use, which makes
programming simpler and less error prone

* Asimple ISA that can be implemented in a way that is very fast

* Automatic and error free translation from the language interface to the ISA
interface

* Compilers do their work statically

* The semantics of the higher level language can be made even more
powerful (in some cases) by deferring some of the compiler’s job to
run time (doing it dynamically)

* E.g., dynamically typed languages
* E.g., run time libraries

Binary Representation

At run time, everything is represented as bits
* instructions
* numbers
* strings
* true / false
* arrays
* objects

Why binary?

Numbers can be written in many ways, e.g., decimal, binary, hexadecimal

Hex is handy because (a) it’s relatively short, and (b) each hex digit
represents a string of 4 bits. (A decimal digit represents a string of 3.32
bits...)

Binary Integers

000 001 010 011 100 101 110 111

signed 0 1 2 3 -4 -3 -2 -1

unsigned 0 1 2 3 4 5 6 7

* Two’s complement representation: why?

* Need a way to represent negative numbers
e Could use a bit to indicate negative or non-negative, but then binary
arithmetic is clumsy
* We can add bit strings representing two’s complement signed integers just
like we add unsigned integers
* simpler is faster

* Why have unsigned numbers?

Floating Point

* 6.0221409 x 1023 in decimal

* How would we represent it in a fixed number of bits
* Use some bits to represent the exponent (here 23)
* Use some bits to represent the mantissa (her 6.0221409)

* Don’t need any bits to represent the base (here 10) because it’s always the
same (defined by the standard, typically 2)

Instruction encoding / classes

CORE INSTRUCTION FORMATS

31 27 26 25 24 20 19 15 14 12 11 i 6

R funct? 1s2 rsl funct3 rd Opcode
I imm|11:0] rsl funct3 rd Opcode
S imm([11:5] rs2 rsl funct3 imm|[4:0] opcode
SB imm[12]10:5] rs2 rs] funct3 |imm[4:1]11]| opcode
U imm|31:12] rd opcode
UJ imm[20(10:1]11|19:12] rd opcode

* R type

e add, sub, sli, slt, sltu, xor, srl, sra, or, and,
* | type

* |w, Ib, addi, slli, slti, sltiu, xori, srli, srai, ori, andi

* SB type
* beq, bne, blt, bge, bltu, bgeu

15

PC-Relative Branching

* |dea: use the PC as the implicit
base register
e Target address = PC + offset

* Don’t have to specify a base
register in the instruction
encoding (because the PC s
always the base register)

* That gives you full 13 bits to hold
the offset

* Might want branch forward in
instruction stream, or might
want to branch back

* Make the offset a signed value
* -4096 to 4095

S

bne x1, x2, offset

Arrays

* Arrays are are contiguous block of memory that we think of as
composed of a number of pieces of identical size

e “Contiguous” and “identical size” allow us to translate the array
concept of indexing, e.g., A[3], into a simple calculation
* A[3] is at base address of A plus 3 times the size of each element
* If x6 holds the address of the first byte of A, then A[3] is at 12(x6)

* If the compiler translates A[3] into 12(x6), there is no array bounds
checking

* |F the language wants to do array bound checking, the compiler must
generate instructions to check the index (unless it can figure it out
statically)

* int A[100];
e inti=A[101]; //error? when?

Objects (Structures)

» Objects are contiguous blocks of memory holding elements that may
be of different sizes

* The compiler determines statically:

* how big each object is
* what the offset is for each element within the object

* For example,
 class Person {
int id;
int phoneNumber;
}
* A Person object is 8 bytes long.
* If x6 is the base address of a Person, 0(x6) is where that Person’s id is stored
and 4(x6) is where phoneNumber is stored
* Or, could be id at 4(x6) and phone at 0(x6) — it doesn’t matter

Compiling a C Program

int wval = 10238;
int 1i;
int main(int argc, char *argv([])

{

int 1i;
for (i = 2; i<=val/2; i++) |
if ((val/i)*1i == val) {

printf (“%d\n”, i);
}
}

return 0;

19

lw X8, i
beq x0, x0, test
body:
<body code>
addi x8, x8, 1
SW X8, i
test: lw x9, val
srai x9,x9,1
blt x8, x9, body
beq x8, x9, body

The Memory Model

subroutine Stack
* While compiling the code, args & locals
the compiler “knows” what

memory will look like at run

time
* The OS (program loader) ”new”
knows the same thing (malloc) Heap
| Static
.data section
Data

text section Instructions

20

Call / Return

int sub(int w) {
intx,vy, z;

return x;

21

val = sub(2);

Stack

,/ sub:

addi sp, sp, -20
sw a0, O(sp)
sw ra, -16(sp)

lw ra, -16(sp)
addi sp, sp, 20
jr - ra

saved ra
X

Y
z
w

Dynamic Dispatch Implementation Strategy

-

id

What problem does this

This class’s solve?
getArea()
instructions
in
memory

[—————— ——— — —

[——————

Shape larger(Shape A, Shape B) {
if (A.getArea() > B.getArea())
return A;
return B;

}

22

Boolean Logic / Gates

* Digital circuits are built out of digital gates

* Each gate implements some logic function

NOT AND
A — o
A —[>o— & B —]
Inputs Output

Input Output A B C
A c 0 0 0
1 0 0

1 0 1 1 1

OR

A
Cc
B

Inputs Qutput

C

e =1 =1

e =1 =11

|t | = |

23

Example Boolean Circuit

A

U

o
>

A| B | Output

00 0

01 |
1{0 |
1|1 0

) -

(-AAB) V (AA-B)

Exclusive Or

24

Full (One Bit) Adder

Input Output
A B Cin Sum Carry
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 | 1

Cin

Cout

25

P3 Q3

C3

]

P Q CI

Basic
Full Adder

coO S

||

co S3

P2 Q2

C2

]

Q Cl

Basic
Full Adder

CO S

|

S2

4-bit full (ripple carry) adder

P1 Q1

C1

]

P Q CI

Basic
Full Adder

CoO S

C2

|

S1

PO Q0 Ci

]

P Q Ci

Basic
Full Adder

CO S

c1

|

SO

26

Sequential Circuit: Operation

Primary inputs * _ Primary outputs
» Combinational >
r_ y| Logic Circuit
Secﬂndawg Secondary
iﬂputsg outputs
Memory

Elements <

* At time n the memory elements have some values
* The combinational circuit has “settled” and its output are stable (unchanging)

* If we update the memory elements values, though, the outputs of the
combinational circuit change

27

Implementing sequential components: the
gated d-latch

D—

-): Q

 Component stores 1 bit, and advertises both it’s value (Q) and the
negation of its value (Q)

* When C(lock)=1 the output Q records the value of D
* if D=1 then R=0 and S=1. R=0 makes Q=1. Q=1 makes Q= 0.
* if D=0 then R=1 and S=0. S=0 makes Q=1, which makes Q=0.

* When C=0 the output ignores the value of D

* both Rand Sare 1. If Q=1 then Q is 0 — no change. If Q=0, then Q is 1 —no
change.

Synthesize a Boolean Circuit (Multiplexor)

(-s Ai0) V (s Ail)

summary

* Make sure the assignments (and their solutions) make sense to you
* Look at the slides
* Re-watch lectures as needed

* Ask questions by email or in office hours

