Datapath / Machine Organization

CSE 410
Lecture 08
Lecture Outline

• The Datapath
 • Basic Components
 • Basic Datapath Layout
 • Basic Datapath Operation
Datapath

• We’ve looked at how to create circuits composed of logic (gates) that perform some computing functions

• We now move up a level of abstraction – the basic components are not gates, but rather small circuits that perform more powerful functions, for example
 • adder
 • multiplexor

• This level of design is called “machine organization”
Single-Cycle Datapath
Components: Instruction Fetch

- A hardware register holds the PC
- An instruction fetch component can retrieve words of memory
 - Takes as an input the address to be fetched
 - We’ll use the PC
 - Gives as an output the 32-bits at that memory address
Components: Register File

- Contains 32 32-bit registers
- Inputs:
 - Two register numbers, to be read
 - A one-bit “control” input indicating whether or not to write a register
 - A write register number
 - Write register data
- Outputs:
 - Contents of read registers whose numbers were given as inputs
Components: ALU

- Performs add, subtract, mul, div, and, or, etc.
- Inputs:
 - 2 32-bit data items
 - Control line indicating what operation to perform
- Output:
 - Result of the operation on the input values
Components: Memory Interface

- **Inputs:**
 - An address to be (possibly) read or written
 - Data to be written
 - Control lines indicating whether to do a read or a write (or neither)

- **Output**
 - Word read from memory, if a read is done
The Control Component

- Control is in charge of making sure the correct items are written (to memory, register, or PC), depending on what the instruction is.
- There is no incentive to not compute something that will not be written.
 - E.g., don’t care what data is fed to the register file as the write data if the register file won’t be written.
Reminder: Instruction Formats

<table>
<thead>
<tr>
<th>CORE INSTRUCTION FORMATS</th>
</tr>
</thead>
<tbody>
<tr>
<td>31 27 26 25 24 20 19 15 14 12 11 7 6 0</td>
</tr>
<tr>
<td>R</td>
</tr>
<tr>
<td>I</td>
</tr>
<tr>
<td>U</td>
</tr>
</tbody>
</table>

- If a register will be written, reg number in bits 11:7
- If one register read, number in bits 19:15
- If two registers read, second number in bits 24:20
- If there’s an immediate:
 - sign bit in bit 31
 - bits 10:5 of immediate in bits 30:25 of instruction
Single-Cycle Datapath
add x3, x2, x1 – PC update
add x3, x2, x1 – fetch x2, x1
add x3, x2, x1 – perform addition
add x3, x2, x1 – write result into x3
addi x3, x2, 1 – differences from add
lw x3,12(x2)
beq x2, x3, 128
sll x4, x3, 29 – what are control values?
jalr x2, 64(x6) – what’s missing in datapath?
Datapath Summary

- Major Components:
 - Control
 - Instruction Fetch & PC Control
 - Register File
 - ALU operation
 - Memory Read/Write
 - Register Write Data