Boolean Circuits

CSE 410

Lecture 7

The Course So Far

What This Course is About

Lecture Outline

- Boolean Functions, Logic Gates, and Boolean Circuits
- Example Combinational Components
 - Adder
 - Multiplexor
- Sequential Component
 - example gated d latch

Boolean Functions

- A function where the inputs and output have value 0 or 1
- Represented by a truth table
 - 0 is false
 - 1 is true
- There are 2^{2^k} distinct Boolean functions with k inputs

Not
$$(\neg x)$$

Input	Output
0	1
1	0

Or
$$(X + Y)$$

Inputs		Output
0	0	
0	1	1
1	0	1
1	1	1

AND/ OR/ NOT gates

- Digital circuits are built out of digital gates
- Each gate implements some logic function

Input	Output
A	C
0	1
1	0

Inp	Output	
A	В	C
0	0	0
0	1	0
1	0	0
1	1	1

Inputs		Output
A	В	C
0	0	0
0	1	1
1	0	1
1	1	1

Combinational Circuit

- We can connect these components together into circuits
- What function does this two-input circuit compute?

Example Circuit

Α	В	Output
0	0	0
0	1	1
1	0	1
1	1	0

 $(\neg A \land B) \lor (A \land \neg B)$

Exclusive Or

Other Gates

Exclusive-OR gate

A	В	Output
0	0	0
0	1	1
1	0	1
1	1	0

NAND gate

A	В	Output
0	0	1
0	1	1
1	0	1
1	1	0

Computing: Binary Addition

Examples:

 $\begin{array}{ccc}
0 & 1 \\
\underline{1} & \underline{1} \\
01 & 10
\end{array}$

Inputs		Outputs	
Р	Q	СО	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

1-bit (half) adder

Inputs		Outputs	
Р	Q	СО	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

4-bit adder

If we had as a component a 3-input 1-bit adder (a "full adder") we could use it to build an n-bit adder

1-bit full adder

Direct Implementation in Gates

-	Input		Output	
Α	В	Cin	Sum	Carry
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

4-bit full (ripple carry) adder

Sequential component: storage

- The outputs of combinational components is a function of their inputs (after some delay)
- Combinational circuits can have no loops
 - Loops create instability
- Sequential circuits can have loops
- How?
 - Components whose output is stable even when inputs are changing
 - Storage

Sequential Circuit: Operation

- At time n the memory elements have some values
 - The combinational circuit has "settled" and its output are stable (unchanging)
 - If we update the memory elements values, though, the outputs of the combinational circuit change

Example: Accumulator Circuit

- Here the inputs are 4 bits wide ("/4")
- If data_in == 0001 and the register holds 0010, the output of the adder will eventually be 0011
- When we update the register, the adder will eventually output 0011

Sequential Circuit: Clocks

- It takes time for the combinational circuit to "settle" when its inputs change
- We don't want to update the memory component while the combinational circuit is settling
- We control the rate of update using a "clock signal"
 - This is what's behind processor specifications like "3.6GHz i5-8600K" versus "2.8GHz i5-8400"
 - Warning: A 4.0GHz processor is very unlikely to be anywhere near twice as fast as a 2GHz processor

Implementing sequential components: the gated d-latch

- Component stores 1 bit, and advertises both it's value (Q) and the negation of its value (Q)
- When C(lock)=1 the output Q records the value of D
 - if D=1 then R=0 and S=1. R=0 makes Q=1. Q=1 makes \bar{Q} = 0.
 - if D=0 then R=1 and S=0. S=0 makes \bar{Q} =1, which makes Q=0.
- When C=0 the output ignores the value of D
 - both R and S are 1. If Q=1 then \overline{Q} is 0 no change. If Q=0, then \overline{Q} is 1 no change.

Other combinational components

Multiplexor – select one of two inputs

- We can expand this implementation by
 - Allowing the inputs (IO and I1) to be n bits wide
 - Cascading the two-input multiplexor to make allow more inputs
 - Implies widening the selector input, S

Looking ahead: CPU data path

Lecture/Course Summary

