Compiling: Additional Topics

CSE 410 22wi
Lecture 05

Lecture Oveview

Review: compiling simple statements and procedures
Classes and objects

Class Hierarchies

Static Typing and Dispatch

Dynamic Dispatch

Compile Time Generation of Source Code

N o Uk wNhe

Generics / Parameterized Types

1. Review: Compiling a C Program

int wval = 10238;

int main(int argc,

{

int 1i;
for (1 = 2; i<=val/2;
if ((val/i) *i ==

}

return O;

1++)
val)

char *argvl[])

{

else:

lw x7, val

lw X9, i

div x10, x9, x7
mul x10, x10, x9
bne x10, x7, else
<body code>

1. Review

int sub(int w) {
intx,vy, z;

return x;

. Call / Return

val = sub(2);

Stack

sub:

addi sp, sp, -20
sw a0, O(sp)
sw ra, -16(sp)

lw ra, -16(sp)
addi sp, sp, 20
jr - ra

saved ra
X

Y
z
w

1. Summary

* At compile time (statically), the compiler

* Figures out where space will be allocated for variables
* In the data section or on the stack
* Avariable’s location is typically an offset from some base register

* For example, local variables are at statically determined offsets from the stack
pointer register

e (There is an analogous pointer register that points at the data section, called
register gp. When programs are bigger than one file, and multiple files contain
.data sections, it isn’t possible to determine offsets from gp as each file is
compiled. Instead, there is an additional build step required, called linking.)
* Turns expessions in the source language into a sequence of assembler
instructions
* This requires that the compiler make decisions about what to use registers for at
each point in execution
* Turns control flow into branches, including use of the jal instruction for
the call-return semantics of subroutines

2. What About Code with Classes/Objects?

* How are machine instructions used to create classes and objects?

e Q: Is any additional functionality required of the ISA (hardware) to
support object oriented programming?
* A: No

 What about class hierarchies? How does that work?

2. Sample Object Oriented Program
class Rectangle { int main(int argc, char *argv[]) {
public: Rectangle plywood(4,8);

Rectangle(int height, int width);

int getArea(); cout << "The rectangle's area is "
private: << plywood.getArea()

int height; << "sq. ft."

int width; << endl;
5

return O;

Rectangle::Rectangle(int height, int width) { }

this->height = height;
this->width = width;

}
This is C++, but we mean to
int Rectangle::getArea() { talk about general ideas
return height * width; rather than specifics of C++

}

2. What Are Objects?

class Rectangle {
public:
Rectangle(int height, int width);
int getArea();
private:
int height;
int width;

I

A Rectangle object

0: height
4: width

* Looking at the class declaration, the compiler understands that every
rectangle object will take two words of storage at runtime

* |t doesn’t know where in memory those two words will be allocated at run
time for any object

e But it does decide (statically) how to use the two words, wherever they are:
the first word is for instance variable “height” and the second for “width”

2. Object as Local Variable

int main(int argc, char *argv[]) {
Rectangle plywood(4,8);

cout << "The rectangle's area is "
<< plywood.getArea()
<< " sq. ft."
<< endl;

return O;

}

This is somewhat C++ specific
— Java operates differently

plywood is a local variable

So, the compiler includes its size (two
ints == 8 bytes) when calculating how
much stack space to allocate on entry
to main

The compiler chooses offset into that
space to hold plywood.

Suppose that offset were 24,
meaning that plywood is the eight
bytes located at 24(sp)

Then plywood.height would be at
24(sp) (offset 0 in plywood) and
plywood.width would be at 28(sp)
(offset 4 in plywood)

2. Constructing an Object

int main(int argc, char *argv[]) {
Rectangle plywood(4,8);

cout << "The rectangle's area is "
<< plywood.getArea()
<< " sq. ft."
<< endl;

return O;

}

The language requires that a
constructor be called when an object
is created

So, the compiler generates a call to
the constructor method as part of the
initial instructions executed on entry
to main

At the language level, the constructor
is a class method

In assembler, the constructor is just a
procedure. The compiler generates a
label for that procedure and puts a jal
instruction into main to call it.

At this level, there is nothing new
about it — class methods are just
subroutines

2. Static Type Checking

class Rectangle {
public:
Rectangle(int height, int width);
int getArea();
private:
int height;
int width;
5

Rectangle::Rectangle(int height, int width) {
this->height = height;
this->width = width;

}

int Rectangle::getArea() {
return height * width;

}

int main(int argc, char *argv[]) {
Rectangle plywood(4,8);

plywood.print();

return O;

}

This is a type error. The compiler
realizes that at compile time
because it sees (a) plywood is a
Rectangle, and (b) Rectangles
don’t have a print() method

11

3. Class Hierarchies

class Shape {
public:
Shape();
int getArea();
protected:
intid;
7

class Rectangle : public Shape {
Rectangle(height, width);
int getArea();

private:

int height, width;

7

class Circle: public Shape {

Circle(int diameter);

int getArea(); // int return type for simplicity
private:

int diameter;

I

Here Shape is a base class
Both Rectangle and Circle are
subclasses

A Rectangle is a Shape

A Circle is a Shape

A Rectangle object requires 3
words of memory: height,
width, and id

A Circle object requires two

words of memory: diameter
and id

4. Static Typing and Dispatch

int main(int argc, char *argv[]) {
Rectangle r(2,4);
Circle c(1);

cout << r.getArea() << endl;
cout << c.getArea() << endl;

return O;

}

“Type checking” is verifying that the
code “makes sense”

* Does variable r have a method
named getArea()?

Type checking can be done statically

* At compile time

Advantages:

* No run time overhead to
determine or verify types

 Compiler can generate code at
compile time that does exactly
what is needed

Disadvantages:

* (Can be somewhat restrictive, as
the language has to limit what
the programmer can write to
things that can be statically
checked

4. Static Typing and Dispatch

int main(int argc, char *argv[]) {
Rectangle r(2,4);
Circle c(1);

cout << r.getArea() << endl;
cout << c.getArea() << endl;

return O;

}

“dispatch” means transferring control
to the proper subroutine

How does compiler know to call
Rectangle.getArea() for r and
Circle.getArea() for c?

Simple: the programmer tolditrisa
rectangle and c is a circle.

5. Dynamic Dispatch

Shape larger(Shape A, Shape B) {
if (A.getArea() > B.getArea())
return A;
return B;

}

 When you look at this code, can you decide whether A.getArea() should invoke
Rectangle.getArea() or Circle.getArea()?

* Neither can the compiler

 The decision can’t be made statically, because we don’t know what types of
objects will be passed as arguments

* Instead, the decision has to be made dynamically — at run time, when we have
objects we can examine to determine their types

5. Dynamic Dispatch Implementation Strategy

id id
height diameter
width

Rectangle object Circle object

16

5. Dynamic Dispatch Implementation Strategy

Rectangle Class descriptor Circle Class descriptor

Rectangle’s
getArea()
instructions |

in
memory

Circle’s
getArea()
instructions

id in id
height memory diameter
width

_ Circle object
Rectangle object

17

5. Dynamic Dispatch Implementation Strategy

Rectangle Class descriptor Circle Class descriptor

Rectangle’s
getArea()
instructions

in
memory
Circle’s
getArea()

class pointer
id
height
width

instructions
in
memory

class pointer
id

diameter

: Circle object
Rectangle object

18

5. Dynamic Dispatch Implementation Strategy

id

This class’s
getArea()
instructions
in
memory

[—————— ——— — —

[——————

Shape larger(Shape A, Shape B) {
if (A.getArea() > B.getArea())
return A;
return B;

}

19

6. Compile Time Generation of Source Code

* Again, the syntax is language (C) specific, but the ideas are general

* Key idea: do source-to-source transformation at compile time

* In C’s case, perform “macro processing” at compile time

* Do replacement of one string with another string everywhere in the source
code before compiling

e Compile what results from doing the substitution

6. Compile Time Generation of Source Code

#define N 100

int main(int argc, char *argv[]) { int main(int argc, char *argv[]) {
inti; inti;
int myArray[N}; int myArray[100};
for (i=0; i<N; i++) » for (i=0; i<100; i++)

myArrayli] = i; myArrayli] = i;

someSubroutine(myArray); someSubroutine(myArray);
return O; return O;

* Nisnot avariable

* N is acompile time string (in this case with value “100”)

* Before compiling, the compiler replaces instances of “N” in the source
with “100”

6. Compile Time Generation of Source Code

#define N oops

int main(int argc, char *argv[]) { int main(int argc, char *argv[]) {
inti; inti;
int myArray[N}; int myArray[oops};
for (i=0; i<N; i++) » for (i=0; i<oops; i++)

myArrayli] = i; myArrayli] = i;

someSubroutine(myArray); someSubroutine(myArray);
return O; return O;

* This is happening on the characters in the program

* |t's as though the programmer had typed something else

* Thereis no type error in the code the programmer actually typed,
because the “pre-processing” is just string-to-string

* The compiler will raise type errors in the produced code, though

22

7. Generics / Parameterized Types

int allEqual(int array[], int arrayLength) {
inti;
for (i=1; i<arrayLength; i++)
if (array[i] != array[0]) return false;
return true;

}

* Because the compiler wants to help the programmer by catching type errors
at compile time, the programmer must specify the type of the elements of
the array

* If | wanted this functionality for an array of floats, say, I'd need to write
another version of the method

* And another for Rectangles and Circles and etc.
* But, the code is correct (almost) no matter what the type of the elements is

e Can | have a “generic” implementation (and still have type checking)?

7. Generics / Parameterized Types

boolean allEqual(int array[], int arrayLength) {
inti;
for (i=1; i<arrayLength; i++)
if (array[i] != array[0]) return false;
return true;

}

* Because the compiler wants to help the programmer by catching type errors

at compile time, the programmer must specify the type of the elements of
the array

* |If | wanted this functionality for an array of floats, say, I'd need to write
another version of the method

* And another for Rectangles and Circles and etc.
* But, the code is correct (almost) no matter what the type of the elements is

e Can | have a “generic” implementation (and still have type checking)?

24

7. Generics / Parameterized Types

* The solution is to write a type-independent code template (that’s C++

terminology) that the compiler can use to generate type-specific
implementations as needed

template <class T>
boolean allEqual(T array[], int arrayLength) {
inti;
for (i=1; i<arrayLength; i++)
if (arrayl[i] != array[0]) return false;
return true;

}

25

7. Generics / Parameterized Types

template <class T>
boolean allEqual(T array[], int arrayLength)

{
inti;
for (i=1; i<arrayLength; i++)
if (array[i] !=array[0]) return false;
return true;

Rectangle rectArray[20];

if (allEqual(rectArray), 20)) {

}

__

{
int i;
for (i=1; i<arrayLength; i++)
if (arrayl[i] != array[0]) return false;
return true;

e o o e e e e e e e e mm e e e mm e e e mm e e e mm e e e mm e e e mm mm e mm mm e e e mm e e e mm e e e e e e e e

26

8. Dynamically Typed Languages

* Some (popular) languages check types at run time rather than compile
time
* Advantages:

e Generics are no problem
e Language feels more powerful to programmer

* Disadvantages:
* Code produced by compiler may be slower (than if statically typed)
* Instead of a clear type error at compile time, you may have a very unclear run
time error
* Example dynamically typed languages:
* Python
* Javascript

* (Java does as much type checking statically as it can, and then does
some verification of type compatibility dynamically when it has no
other choice)

27

8. Dynamically Typed Languages

Example python program (lect6.py)

dynamicallyTypedVariable = 10;
print(‘'variable = {0} .format(dynamicallyTypedVariable));

dynamicallyTypedVariable = "Hello";
print(‘'variable = {0} .format(dynamicallyTypedVariable));

Example execution (Note: no obvious compile step)

S python lect6.py
variable = 10
variable = Hello

28

Lecture Summary

e Qur attention has been on the hardware-software interface
* The Instruction Set Architecture (ISA)

* The most important point to us is that the compiler is a translator
from a program written in the source language to a program written
to the ISA specification

* We’ve concentrated on translation of simple, statically typed languages (like
C)

* But, the compiler can do much more
* E.g., help the programmer generate code (rather than having to type it all)

* Can do some/many things dynamically rather than statically, which in some
ways makes writing the program easier

