WA UNIVERSITY of WASHINGTON

Compiling (especially C)

CSE 410 22wi
Lecture 05

WA UNIVERSITY of WASHINGTON Pa6gFreViRyq Fiw

GWIB54 S

What is a compiler?

+» A compiler is a translator

+ |t translates the meaning of a program written in one
language into an equivalent program written in
(usually) another language
= E.g., Cto Assembler (or machine code)
= E.g.,Java to Java bytecode
= E.g., Javascript to “native code”

WA UNIVERSITY of WASHINGTON P46 fFIrelRyq £iw GWIB54 &8s

Program

« A program is the specification of a computation

It is not (necessarily) a description of what steps must be taken
to carry out the computation
= Even though we usually think of it that way

« A straightforward compilation will do a fairly direct translation

= A multiply in the source program will cause there to be a multiple in the
target program, say

» The compiler is free to create an target program that is
equivalent to the source program, though

WA UNIVERSITY of WASHINGTON

“Equivalent Program”

P46 sFmreviRyqg £iw

int main(int argc, char *argv[])
{
int x = 20;
inty=21;
int z;
z = (x-y)*(x+y) / (3*x + 4*y);
return O;

int main(int argc, char *argv[])

{
int x = 20;
inty=21;
int z;
z=0;
return O;

int main(int argc, char *argv[])
{

return O;

}

GWIB54 S5y

WA UNIVERSITY of WASHINGTON P46 fFIrelRyq £iw

GWIB54 S

C Overview

+» Cis a Higher Level Language (HLL)

+» Cis much more convenient to write than assembler,
but C's semantics “expose” some aspects of the
underlying hardware

" |n particular, main memory

+ It looks pretty familiar to a Java programmer, but
there are many details that are really different

= We won’t be attempting to master the language...

WA UNIVERSITY of WASHINGTON P46 fFIrelRyq £iw GWIB54 &8s

The C Compiler

« Decides where to store variables

int h = 8;
h: .word 8

+» @Generates instructions / Manages Use of Registers

K kA K kA
1w x10, h](]#4
s11 x10, x10, 1 0
addi x10, x10, -1 1w x10, h
sSW x10, h slli x10, x10, 1

addi x10, x10, -1
slli x10, x10, 2
addi x10, x10, -1
SW x10, h

+ Tries to detect errors and/or make it hard(er) to write
programs that have errors

WA UNIVERSITY of WASHINGTON P46FweviRyq £iw GWI854 LEes

Anatomy of a C Program

“Global variable”

Command line arguments
——
int val = 10238; ,/////

int main (int argc, char *argv([])

{ V{4 H V4
Where execution int i; <« local variable
starts for (i = 2; i<=val/2; i++) {
1if ((val/i)*i == wval) {

The language doesn’t __——— Printf(“sd\n”, 1);
have a print statement. }

Instead, call a subroutine. ‘\
return 0; Curly braces for compound
} \ statements

End of execution

Output:

5119

WA UNIVERSITY of WASHINGTON

P46 sFmreviRyqg £iw GWIB854 S

Compiling a C Program

.data
//Globa/ Val‘iab/es” Va|: .WOI’d 10238

\\‘int val = 10238;,////,

int main (int argc, char *argv([])

{

int 1;
for (1 = 2; 1i<=val/2; 1++) {
1if ((val/i)*i == wval) {

printf (“%d\n”, 1i);

}

return 0O;

WA UNIVERSITY of WASHINGTON P46 FTeRyq Fiw

Compiling a C Program

int wval = 10238;
int 1i;
int main (int argc, char *argv([])

{

int 1i;
for (i = 2; i<=val/2; i++) |
if ((val/i)*1i == val) {

printf (“%d\n”, i);

}

return 0O;

addi x8, x0, 2
SW X8, i
beq x0, x0, test

body:

test:

<body code>

addi x8, x8, 1
SW X8, i
lw X9, val

srai x9,x9, 1
blt x8, x9, body
beq x8, x9, body

GWIB54 S5y

WA UNIVERSITY of WASHINGTON

P46 sFmreviRyqg £iw

Compiling a C Program

int
int main (int argc,

{

val = 10238;

char *argvl[])

int 1i;
for (i = 2; i<=val/2; i++) {
if ((val/i)*i == val) |
printf (“sd\n”, 1i);

}

return 0O;

else:

GWIB54 S5y

lw x7, val

lw X9, i

div x10, x9, x7
mul x10, x10, x9
bne x10, x7, else
<body code>

10

WA UNIVERSITY of WASHINGTON P46 fFIrelRyq £iw GWIB54 &8s

Part 1: Summary

int wval = 10238;
int main(int argc, char *argv([])
{
int 1i;
for (1 = 2; i<=val/2; i++) {
if ((val/i)*i == wval) |
printf (“sd\n”, 1);

}

return 0O;

}

e Translating the bolded lines to what we know of the ISA is pretty straightforward
* Notice that the language defines the rules for things like operator precedence, as
well as basic syntax, like the use of curly braces for compound statements
* The language may provide higher level abstractions than can be implemented in
a single machine instruction, like classes
* Single statements in the language may generate many many assembler instructions,

or may even require calling some language provided methodat runtime (e.g., object
creation)

11

WA UNIVERSITY of WASHINGTON

P46 sFmreviRyqg £iw

Part Il: Subroutines

int wval = 10238;
int main(int argc, char

{

int i;

for (1 = 2; 1<=val/2;

if ((val/i)*i ==

printf (“%d\n”,

}

return 0;

*argv([])
i++) |

val) {
i);

GWIB54 S5y

Subroutines?

Where do argument
values go?

Storage for local variables
is allocated dynamically,
on entry to subroutine.

Control flow on return is

“go back to wherever you
came from”!

12

WA UNIVERSITY of WASHINGTON P46 fFIrelRyq £iw GWIB54 &8s

Subroutines

When compiling a call of a subroutine, the compiler has to
generate instructions that put the arguments somewhere the
called routine can find them

= We may already know about instructions that will let us do that

When compiling a subroutine, the compiler needs to generate
code that will allocate memory for local variables at run time,
and code that accesses the arguments supplied on this call

" This sounds more like a question of memory management than what
instructions are in the ISA...

In the general case, the subroutine might itself call another
subroutine (or even itself) before it returns

"= The only control flow instructions we have seen are branches. Can
call/return be done with those? (Hint: no)

13

WA UNIVERSITY of WASHINGTON

+» While compiling the
code, the compiler args &locals

The Memory Model

subroutine

“knows” what
memory will look

like at run time —
The OS (program mellod
loader) knows the

same thing .data section

.text section

P46 sFmreviRyqg £iw

Stack

Heap

Static
Data

Instructions

GWIB54 s

WA UNIVERSITY of WASHINGTON Pa6gFreViRyq Fiw

The Stack

The stack grows downward during
execution, from high memory

toward low memory ‘

The operating system (loader) and
the compiler agree to use register
sp (formerly known as x2) as a

pointer to the bottom of the stack

Stack

Heap

Static
Data

Instructions

GWIB54 S

15

WA UNIVERSITY of WASHINGTON P46 fFIrelRyq £iw GWIB54 &8s

The Stack
Stack

* The first thing the subroutine code
does is allocate space by moving
the stack pointer down

-7 sub: addi sp, sp, -32

addi sp, sp, 32
<return to caller>

16

WA UNIVERSITY of WASHINGTON

The Stack / Locals

int sub(int w) {
intx,vy, z;

return x;

P46 sFmreviRyqg £iw

Stack

GWIB54 S5y

N

! sub:

addi sp, sp, -12

addi sp, sp, 12
<return to caller>

Example: to move variable x into a register,
the compiler could generate
Iw x10, 8(sp)

17

WA UNIVERSITY of WASHINGTON Pa6gFreViRyq Fiw

Passing Arguments

| . Both the caller
int sub(int w) { and the subroutine

intx,y, z; know how many

return x;

arguments there are //

Calling code
4 val = sub(2);

Subroutine code

The caller puts the arguments in registers a0-a7
(10-x17) before branching.

The calling code “branches” to the subroutine.

The subroutine starts running, on the same
cpu/core.

The subroutine knows they’re in those registers.

(If the arguments don’t fit in 8 registers, the caller
puts the excess on the stack before branching, and
the subroutine gets them from there.)

18

GWIB54 S

WA UNIVERSITY of WASHINGTON P46 el RYq Fiw GWIB54 &8s

The Stack / Arguments
val = sub(2); Stack
int sub(int w) {
intx,y, z; y
return x; Y
} w
sub: addi sp, sp, -16

/ sw a0, O(sp)

addi sp, sp, 16
<return to caller>

Because the compiler might want to use
register a0 for the subroutine’s code (e.q.,

the subroutine calls a subroutine), it generates
code to make space to save it on the stack and
to copy a0... to that space on entry.

19

WA UNIVERSITY of WASHINGTON

Call / Return

int sub(int w) {
intx,y, z

return x;

P46 sFmreviRyqg £iw GWIB54 LSS

callsub cqlling code

/ Subroutine code
return

The “call” writes the PC and so branches to the
subroutine

When the subroutine wants to “return”, it needs
to branch to the instruction after the call.
Where is that?

Need to save the PC somewhere when calling
 (Why is it too late to do it in the subroutine?)

20

GWIB54 S

WA UNIVERSITY of WASHINGTON P46 fFIrelRyq £iw

Jump-and-Link

+ jalis an instruction that
1. saves the already updated PC to a register, and

2. branches
«» S0, we transfer control to the subroutine and when it
starts running the return address is in a register

+» By convention, register ra (x1) is used to save the PC.

+» The caller knows to set ra (with a jal instruction), and
the subroutine knows to save ra on the stack until it

needs it to do a return

21

WA UNIVERSITY of WASHINGTON P46 FTeRyq Fiw

GWIB54 S5y

Call / Return
val = sub(2); Stack
int sub(int w) {
intx,y, z;
saved ra
return x; X
} y
4
,,,,, > W
sub: addi sp, sp, -20

- sw a0, O(sp)
sw ra, -16(sp)

lw ra, -16(sp)
addi sp, sp, 20
jr ra

22

WA UNIVERSITY of WASHINGTON P46 gFreviRyq Fiw GWIB5A Sus

One Last Detail: The Return Value

int sub(int w) {
intx,y, z;

return x;

}

+» The problem of returning a value back to the caller is
just like the problem of passing arguments in from
the caller

+ The solution is the same
= |eave the return value in a register
" |n RISC-V, register a0 is used

23

WA UNIVERSITY of WASHINGTON P46 el RYq Fiw GWIB54 &8s

Security: Buffer Overflow
val = sub(2); StaCk
int sub(int x) {
int myArray[3];
saved ra
return x;
}
myArray
,,,,, > X
'," Suppose the code fills myArray with
data it gets from the user (e.g., from a file or
from the network)
AND

the code doesn’t check how much data it gets.

i=0;
while (more data) {
x[i] = <new data element>;
i++;

V4

}

24

W UNIVERSITY of WASHINGTON P46 SF TR yq Eiw —

Security: Buffer Overflow
. _ val = sub(2); StaCk
int sub(int x) {
int myArray[3];
saved ra
return x;
} |
myArray
I x (arg)
',’/ Suppose the code fills myArray withdata it gets
) from the user: from a file or from the network
e AND the code doesn’t check how much data it
i gets.

i=0;
while (more data) {
x[i] = <new data element>;
I++,
}
return; // 11!

25

WA UNIVERSITY of WASHINGTON P46 el RYq Fiw GWIB54 &8s

Procedures: Managing Register Usage

Caller Callee Caller
y=2%x+3; int sub(int x) y=2%x+ 3;
y = sub(y); { y = sub(y);
if(y<0)y=2*x+3; if(y<0)y=2%x+3;
return val;
}
) time
/f the caller put the will it still be in x10
value of 2*x + 3 in on return from the

x10... subroutine?

26

WA UNIVERSITY of WASHINGTON P46 fFIrelRyq £iw GWIB54 &8s

Procedures: Managing Register Usage

«» Options:
® Caller Saves All

- Before making the call, the caller saves any values currently in
registers that it might want to use again after the call

- Callee doesn’t have to save and restore any register
" Callee Saves All

- Callee must save the value in any register it wants to use, and must
restore it just before returning

" Problems

- Caller Saves All might save registers the callee isn’t going to use
anyway

- Callee Saves All might save registers the caller doesn’t care about

27

WA UNIVERSITY of WASHINGTON P46 fFIrelRyq £iw GWIB54 &8s

Procedures: Managing Register Usage

« RISC-V solution

" 12 registers are callee saved

- Callee needs to save and restore their values if it wants to use those
registers

- So, callee should avoid using those registers
- Called sO through s11

= 7 registers are caller saved

- Caller needs to save them before call and restore them after if it
wants to preserve their values across the call

- Callee is free to use those registers without saving/restoring
- So, callee wants to use those registers before any of s0-s11
- Called t0 through t6

28

WA UNIVERSITY of WASHINGTON P46 fFIrelRyq £iw GWIB54 &8s

Procedure Call Summary (to this point)

Procedure call works by agreement between the caller and the callee

Both caller and callee know “the signature” of the procedure: e.g., int
sub(int x, int y)

Both know the caller will leave the two arguments in registers a0 through
a7, so the callee should look for them there

Both know the caller must save values in registers t0 through t6

Both know the caller will use a jal that saves the address of its next
instruction in register ra

On entry, the callee allocates space by moving the stack pointer down to:

= to (possibly) save the arguments in memory,
= for its own local variables
® to save any of s0-s11 that it wants to use, O

On return, the callee loads the saved ra value back into ra, restores any
saved s0-s11 registers, moves the stack pointer back up to where it was,
and branches to the address in ra

29

